
PAGE: 1

DEPARTMENT OF COMPUTER SCIENCE & ENGG.

Computer Networks Lab Manual

[CSE 3113]

PAGE: 2

CONTENTS

LAB NO. TITLE
PAGE

NO.
REMARKS

 Course Objectives and Outcomes i

 Evaluation plan i

 Instructions to the Students ii

 1
Socket Programming in ‘C’ using TCP -Iterative

Client-Server Programs
1

2
Socket Programming in ‘C’ using TCP- Concurrent

Client-Server Programs
12

3
Socket Programming in ‘C’ using UDP and Network

Monitoring and Analysis with Wireshark
18

4 Network Data Analysis using tcpdump 27

5 Computer Network Design using HUB in GNS3 33

6
Computer Network Design using SWITCH and

ROUTERS in GNS3
52

7 Study of Domain Name Server 66

8 Study of DHCP Server 70

9 Introduction To NS2: Wired Network 75

10 Measuring Performance of Protocols with NS2 94

11 Design of VLANs Using GNS3 96

12 Dynamic Routing Protocol 101

13 Mini Project 108

14 References 110

15 Appendix 111

Course Objectives

• To understand network using GNS3 Simulation and NS2.

• To develop skills in network monitoring and analysis using various tools.

• To understand development of network applications.

• To design and deploy computer networks.

Course Outcomes

At the end of this course, students will be able to

• Learn to use Network Related commands and configuration files in Linux Operating

System.

• Learn to Develop Network Application Programs.

• Analyze Network Traffic using Network Monitoring Tools

Evaluation plan

SN Components Marks Duration Comments

1 Test 20 30 Minutes Write-Up:6M, Execution:4M (In Regular labs)

2 Mini Project 20 Semester The suggested topic list is in Appendix-1

3 Continuous

Evaluation

20 In Regular

Labs

The assessment is based on punctuality,

program execution, neatness of Lab Record,

viva-voce etc.

 Total Internal 60

4 End Semester 40 120 minutes

 Total 100

PAGE: 2

INSTRUCTIONS TO THE STUDENTS

Pre- Lab Session Instructions

1. Students should carry the Lab Record and the required stationery to every lab

session.

2. Be on time and follow the institution’s dress code.

3. Must Sign in the log register provided.

4. Make sure to occupy the allotted seat and answer the attendance.

5. Adhere to the rules and maintain the decorum.

In- Lab Session Instructions

• Follow the instructions on the allotted exercises.

• Show the program and results to the instructors on completion of experiments.

• On receiving approval from the instructor, copy the program and results in the Lab record.

• Prescribed textbooks and class notes can be kept ready for reference if required.

General Instructions for the Exercises in Lab

• Implement the given exercise individually and not in a group.

• Lab records should be complete with proper design, Algorithms, and Flowcharts, related

to the experiment they perform.

• Plagiarism (copying from others) is strictly prohibited and would invite severe penalties

in evaluation.

• The exercises for each week are divided into three sets:

➢ Solved exercise.

➢ Lab exercises - to be completed during lab hours.

• In case a student misses a lab class, he/ she must ensure that the experiment is completed

during the repetition class with the permission of the faculty concerned but credit will be

given only to one day’s experiment(s).

• Questions for lab tests and examinations are not necessarily limited to the questions in

the manual but may involve some variations and/or combinations of the questions.

 Instructions for Mini Project:

• All the students must take up a mini-project and submit the project report.

• Mini projects can be taken up in a group of a maximum comprising of 2 or 3 students.

• Students may refer to Appendix-I for list of suggested topics for Mini Project.

 The Students Should Not:

• Bring mobile phones or any other electronic gadgets to the lab.

• Go out of the lab without permission.

PAGE: 3

BASIC SKILL SETS NEEDED

Basic Computer Networking related commands and configurations

1. Unix Utilities to test Internet connection and to diagnose congestion between

computers:

ifconfig: The ifconfig command is used to configure a network interface. The following options

are used for the reconfiguration of the IP address and network mask.

ifconfig -a : Shows the states of all interfaces in the system.

ifconfig -s : Display a short list, instead of details.

ifconfig <interface name> <new IP address> up : Assigns a new IP address to the interface and

brings it up.

ifconfig<interface name>down: Disables the network interface, where interface name is the

name of the Ethernet interface.

 ifconfig <interface name > netmask <new netmask> : Assigns a new network mask for the interface.

 Ping: Ping (also written as PING or ping) is a utility that you use to determine whether or not a

 specific IP address is accessible. Ping works by sending a packet to a specified address and

 waiting for a reply. Ping is used primarily to troubleshoot Internet connections and there are

 many freeware and shareware Ping utilities available for download.

PAGE: 4

Traceroute: Traceroute is a utility that traces a packet from your computer to an Internet host,

but it will show you how many hops the packet requires to reach the host and how long each hop

takes. If you're visiting a Web site and pages are appearing slowly, you can use traceroute to

figure out where the longest delays are occurring. Traceroute utilities work by sending packets

with low time-to-live (TTL) fields. For implementing the traceroute command, you have to

first install traceroute. The TTL value specifies how many hops the packet is allowed before

it is returned. When a packet can't reach its destination because the TTL value is too low, the last

host returns the packet and identifies itself. By sending a series of packets and incrementing the

TTL value with each successive packet, traceroute finds out who all the intermediary hosts.

http://www.webopedia.com/TERM/T/TTL.html

PAGE: 5

TRY IT OUT:

Connect the computers in local area network

1. Right click on the network manager applet,

• Go to Edit connections ->wired tab->add

2. Put the mac address of the interface you will be configuring. The ifconfig command can

show you what the mac address is:

$ ifconfig

eth0 Link encap:Ethernet HWaddr 00:30:1b:b9:53:94

HWaddr 00:30:1b:b9:53:94 = mac address

3. Then click the ipv4 settings tab. set method to manual.

4. click add to add IP address

example for computer one would be

address | netmask | gateway

10.0.0.1 | 255.255.255.0 |

example for computer two would be

10.0.0.2 | 255.255.255.0 |

5. See if you can ping each other from computer one.

PAGE: 6

$ ping 10.0.0.2

ping 10.0.0.2 (10.0.0.2) 56(84) bytes of data.

64 bytes from 10.0.0.2: icmp_seq=1 ttl=128 time=0.457 ms

I. Do it Yourself.

Note: Use man command to explore various options

1. What is the IP of the machine you are using? Compare it with the IP of your

neighbors.

Are the IPs of your neighbors the same? Why or why not?

2. Use the ping command for the following URLs and record the success or failure

statistics along with the average round trip time.

a) google.com

b) facebook.com

3. Based on output of ifconfig -a command, identify the following

• Host Id

• MAC address of your system[physical address]

• Subnet mask

4. In the LAN, compare your result of Q3, with your neighbor computers. What

similarities do you see in the MAC address?

5. With the help man pages, comment on the results of ping with different options.
6. Ping the computer’s loopback IP address. Type the following command:

ping 127.0.0.1

The address 127.0.0.1 is reserved for loopback testing. If the ping is successful,

then TCP/IP is properly installed and functioning on this computer

7. Assign static IP address/mask with ifconfig command to your computer

8. Configure your computer to receive Network Settings from DHCP Server of the

Institution.

9. Configure DNS Server address for your host with static IP address.

10. Learn about configuring a host behind proxy server of your Institution

11. Learn about Internet Browser’s Network Configurations.

PAGE: 1

LAB NO: 1 Date:

Socket Programming in ‘C’ using TCP -Iterative Client-Server Programs

Objectives:

• To familiarize yourself with application-level programming with sockets.

• To understand principles of Inter-Process Communication with Unix TCP Sockets.

• To Learn to write Network programs using C programming language.

Prerequisites:

• Knowledge of the C programing language and Linux Networking APIs

• Knowledge of Basic Computer Networking

I. Sockets

Sockets allow communication between two different processes on the same or different

machines. To be more precise, it's a way to talk to other computers using standard Unix file

descriptors. In Unix, every I/O action is done by writing or reading a file descriptor. A file

descriptor is just an integer associated with an open file and it can be a network connection, a

text file, a terminal, or something else. To a programmer, a socket looks and behaves much like a

low-level file descriptor. This is because commands such as read() and write() work with sockets

in the same way they do with files and pipes.

Types of Sockets

There are four types of sockets available to the users. The first two are most commonly used and

the last one is rarely used.

• Stream Sockets: Delivery in a networked environment is guaranteed. If you send

through the stream socket three items "A, B, C", they will arrive in the same order - "A,

B, C". These sockets use TCP (Transmission Control Protocol) for data transmission. If

delivery is impossible, the sender receives an error indicator. Data records do not have

any boundaries.

• Datagram Sockets: Delivery in a networked environment is not guaranteed. They're

connectionless because you don't need to have an open connection as in Stream Sockets -

PAGE: 2

you build a packet with the destination information and send it out. They use UDP (User

Datagram Protocol).

• Raw Sockets: These provide users access to the underlying communication protocols,

which support socket abstractions. Raw sockets are not intended for the general user; they

have been provided mainly for those interested in developing new communication

protocols, or for gaining access to some of the more cryptic facilities of an existing

protocol.

Types of Servers

There are two types of servers you can have:

• Iterative Server: This is the simplest form of server where a server process serves one

client and after completing the first request, it takes request from another client.

Meanwhile, another client keeps waiting.

• Concurrent Servers: This type of server runs multiple concurrent processes to serve

many requests at a time because one process may take longer and another client cannot

wait for so long. The simplest way to write a concurrent server under Unix is to fork a

child process to handle each client separately.

How to implement a client

The system calls for establishing a connection are somewhat different for the client and

the server, but both involve the basic construct of a socket. Both the processes establish

their own sockets. The steps involved in establishing a socket on the client side are as

follows:

• Create a socket with the socket() system call.

• Connect the socket to the address of the server using the connect() system call.

• Send and receive data. There are a number of ways to do this, but the simplest way is

to use the read() and write() system calls.

How to implement a Server Program in C using Linux APIs?

The steps involved in establishing a socket on the server side are as follows:

• Create a socket with the socket() system call.

• Bind the socket to an address using the bind() system call. For a server socket on the

Internet, an address consists of a port number on the host machine.

• Listen for connections with the listen() system call.

• Accept a connection with the accept() system call. This call typically blocks the

connection until a client connects with the server.

• Send and receive data using the read() and write() system calls.

PAGE: 3

Figure 1.1 TCP client server interactions

Basic data structures used in Socket programming:

Various structures are used in Unix Socket Programming to hold information about the

address and port, and other information. Most socket functions require a pointer to a socket

address structure as an argument. Structures defined in this chapter are related to Internet

Protocol Family.

𝗈 Socket Descriptor

● A simple file descriptor in Unix. Data type is integer.

𝗈 Socket Address

● This construct holds the information for socket address.

 Table 1.1 System calls used in socket programming

PAGE: 4

syntax

struct sockaddrs {

unsigned short sa_family; // address family, AF_xxx or //PF_xxx

char sa_data[14]; // 14 bytes of protocol address
};

𝗈 AF stands for Address Family and PF stands for Protocol Family.

Table 2.2 Address Family

Name Purpose

AF_UNIX, AF_LOCAL Local communication

AF_INET IPv4 Internet protocols

AF_INET6 IPv6 Internet protocols

AF_IPX IPX - Novell protocols

𝗈 struct sockaddr_in

● This construct holds the information about the address family, port number,

Internet address,and the size of the struct sockaddr.

𝗈 struct sockaddr_in

{

short int sin_family; // Address family unsigned short int sin_port; // Port number

struct in_addr sin_addr; // Internet address

};

𝗈 The IP address structure, in_addr, is defined as follows

struct in_addr

{

unsigned long int s_addr;

};

PAGE: 5

Some of the System Calls Used for Conversion

Some systems (like x8086) are Little Endian i.e., least significant byte is stored in the higher

address, whereas in Big-Endian systems most significant byte is stored in the higher address.

Consider a situation where a Little-Endian system wants to communicate with a Big Endian one,

if there is no standard for data representation then the data sent by one machine is misinterpreted

by the other. So the standard has been defined for the data representation in the network (called

Network Byte Order) which is the Big Endian.

The system calls that help us to convert a short/long from Host Byte order to Network Byte

Order and vice versa are:

• htons() -- "Host to Network Short"

• htonl() -- "Host to Network Long"

• ntohs() -- "Network to Host Short"

• ntohl() -- "Network to Host Long"

To ensure correct byte ordering of the 16-bit port number, your server and client need to apply

these functions to the port address.

For example

server_address.sin_addr.s_addr= htonl(INADDR_ANY);

server_address.sin_port = htons(9734);

IP address is a 32bit integer-not convenient for humans. So, the address is written in dotted

decimal representation.

𝗈 inet_addr() converts the Internet host address from the standard numbers-and-dots

notation into binary data. It returns nonzero if the address is valid, zero if not.

𝗈 inet_aton() is also used for same purpose.

System calls used.

1. Socket creation in C using socket()

PAGE: 6

int sockid = socket(family, type, protocol);

• sockid is socket descriptor, an integer (like a file-handle)

• family is the communication domain, like PF_INET for IPv4 protocols and Internet

addresses or PF_UNIX for Local communication and File addresses.

• Type defines communication type such as SOCK_STREAM or SOCK_DGRAM.

• protocol specifies protocol used. It take values like IPPROTO_TCP or

IPPROTO_UDP but usually set to 0 (i.e., use default protocol).

If the return value sockid is negative values, it means there is problem in socket creation.

NOTE: socket call does not specify where data will be coming from, nor where it will be

going to – it just creates the interface!

2. Assign address to socket using bind()
bind() associates and reserves a port for use by the socket.

Syntax:

int status = bind(sockid, &addrport, size);

• Sockid is a integer describing socket descriptor

• addrport is struct sockaddr which contains the (IP) address and port of the

machine „ for TCP/IP server, internet address is usually set to

INADDR_ANY, i.e., chooses any incoming interface

• size specifies the size (in bytes) of the addrport structure

• Status will be assigned -1 returns on failure.

3. Listening to connection requests using listen()

This system call instructs TCP protocol implementation to listen for connections

Syntax:

int status = listen(sockid, queueLimit);

• Sockid is socket descriptor which is created using socket()

• Queuelemit is an integer which specifies number of active participants that

can “wait” for a connection

• Status will be assigned -1when returns on failure.

Note: The listening socket (sockid) is never used for sending and receiving. It is used

by the server only as a way to get new sockets.

4. Establish Connection using connect()

The client establishes a connection with the server by calling connect()

Syntax:

int status = connect(sockid, &foreignAddr, addrlen);

• sockid is socket descriptor to be used in connection

• foreignAddr is struct sockaddr which contains address of the passive

participant

• addrlen is sizeof(foreignAddr)

PAGE: 7

• Status will be assigned -1 when returns on failure

Note: connect() is blocking where as listen() is non blocking.

5. Accept incoming Connection using accept()

The server gets a socket for an incoming client connection by calling accept()

Syntax:

int newsockid = accept(sockid, &clientAddr, &addrLen);

• newsockid is an integer, the new socket is created in server which is client

specific and this new socket is used for data-transfer between server and

client.

• Sockid is the socket created using socket system call, which is used only to

listen to incoming requests from clients.

• clientAddr is in the form of struct sockaddr, address of the active participant.

• addrLen is size of clientAddr parameter.

Note: accept() is blocking, it waits for connection before returning and dequeues the

next connection on the queue for socket (sockid).

6. Exchanging data with stream socket

Application running in server and client(s) can transfer data using send() and receive()

system call.

Syntax:

int count = send(sockid, msg, msgLen, flags);

• Sockid is the new socket descriptor created by accept in server side and

socket in client side, depending on where it is used.

• Msg is an array holding message to be transmitted.

• msgLen holds length of message (in bytes) to transmit.

• flags are integer, special options, usually set 0

• Return value count has number of bytes transmitted and is set to -1 on error

Syntax:

int count = recv(sockid, recvBuf, bufLen, flags);

• recvBuf stores received message

• bufLen holds number if bytes

7. Closing the socket using close()
When finished using a socket, the socket should be closed.

Syntax:

int status= close(sockid);

• sockid: the file descriptor (socket being closed)

• status: 0 if successful, -1 if error

Closing a socket closes a connection (for stream socket) and frees up the port used by the socket.

PAGE: 8

II. SOLVED EXERCISE:

Write an iterative TCP client server program where client sends a message to server and server

echoes back the message to client. Client should display the original message and echoed

message.

Note: As socket is also a file descriptor, we can use read and write system calls to receive and

send data.

Program:

Server code:

// Make the necessary includes and set up the variables:

#include<stdio.h>

#include<string.h>

#include<sys/types.h>

#include<sys/socket.h>

#include<netinet/in.h>

#define PORTNO 10200

int main()

{

int sockfd,newsockfd,portno,clilen,n=1;

struct sockaddr_in seraddr,cliaddr;

int i,value;

// create an unnamed socket for the server

sockfd = socket(AF_INET,SOCK_STREAM,0);

//Name the socket

seraddr.sin_family = AF_INET;

seraddr.sin_addr.s_addr = inet_addr("172.16.59.10");// **

seraddr.sin_port = htons(PORTNO);

bind(sockfd,(struct sockaddr *)&seraddr,sizeof(seraddr));

//Create a connection queue and wait for clients

listen(sockfd,5);

PAGE: 9

while (1) {

char buf[256];

printf("server waiting");

//Accept a connection

clilen = sizeof(clilen);

newsockfd=accept(sockfd,(struct sockaddr *)&cliaddr,&clilen);

//Read and write to client on client_sockfd (Logic for problem mentioned here)

n = read(newsockfd,buf,sizeof(buf));

printf(" \nMessage from Client %s \n",buf);

n = write(newsockfd,buf,sizeof(buf));

}

}

**- indicates replace this address with your systems IP address

Client Code:

//Make the necessary includes and set up the variables

#include<sys/types.h>

#include<sys/socket.h>

#include<stdio.h>

#include<netinet/in.h>

#include<arpa/inet.h>

#include<stdlib.h>

#include<string.h>

int main()

{

int len,result,sockfd,n=1;

struct sockaddr_in address;

char ch[256],buf[256];

//Create a socket for the client

sockfd = socket(AF_INET, SOCK_STREAM, 0);

PAGE: 10

//Name the socket as agreed with the server

address.sin_family=AF_INET;

address.sin_addr.s_addr=inet_addr("172.16.59.10"); **

address.sin_port=htons(10200);

len = sizeof(address);

//Connect your socket to the server’s socket

result=connect(sockfd,(struct sockaddr *)&address,len);

if(result==-1)

{

perror("\nCLIENT ERROR");

exit(1);

}

//You can now read and write via sockfd (Logic for problem mentioned here)

printf("\nENTER STRING\t");

gets(ch);

ch[strlen(ch)]='\0';

write(sockfd,ch,strlen(ch));

printf("STRING SENT BACK FROM SERVER IS ");

while(n){

n=read(sockfd,buf,sizeof(buf));

puts(buf);

}

}

**- indicates replace this address with your systems IP address

PAGE: 11

Steps to execute the program.

1. Open two terminal windows and open a text file from each terminal with .c extension using

command:

$gedit filename.c

2. Type the client and server program in separate text files and save it before exiting the text

window.

3. First compile and run the server using commands mentioned below

a. $gcc filename –o executablefileName //renaming the a.out file

b. $./ executablefileName

4. Compile and run the client using the same instructions as listed in 3a & 3b.

Note: The ephemeral port number has to be changed every time the program is executed.

III. Lab Exercises:

Write iterative TCP client server ‘C’ programs to:

1. To illustrate encryption and decryption of messages using TCP. The client accepts

messages to be encrypted through standard input device. The client will encrypt the string

by adding 4(random value) to ASCII value of each alphabet. The encrypted message is

sent to the server. The server then decrypts the message and displays both encrypted and

decrypted forms of the string. Program terminates after one session.

2. Where the client accepts a sentence from the user and sends it to the server. The server

will check for duplicate words in the string. Server will find number of occurrences of

duplicate words present and remove the duplicate words by retaining single occurrence of

the word and send the resultant sentence to the client. The client displays the received

data on the client screen. The process repeats until the user enter the string “Stop”. Then

both the processes terminate.

PAGE: 12

LAB NO: 2 Date:

Socket Programming in ‘C’ using TCP- Concurrent Client-Server Programs

Objectives:

• To implement concurrent servers to handle multiple requests by client at a time.

Prerequisites:

• Understanding of Multiprocessing/Multitasking Concepts of Operating Systems.

• Knowledge of the C programing language and Linux Networking APIs

I. Introduction to Socket Programming in ‘C’ using TCP/IP – Concurrent Servers

There might be a need to consider the case of multiple, simultaneous clients connecting

to a server. The fact that the original socket is still available and that sockets behave as file

descriptors gives you a method of serving multiple clients at the same time. If the server calls

fork to create a second copy of itself, the open socket will be inherited by the new child

process. It can then communicate with the connecting client while the main server continues

to accept further client connections. This is, in fact, a fairly easy change to make to your

server program, which is shown in the following.

PAGE: 13

 Figure 3.1 TCP concurrent server and clients interactions

Function Description: fork() The fork command creates a new separate process for each client. The fork()

command splits the current process into two processes: a parent and a child. The new process (child process) is an

almost exact copy of the process that calls it (the parent process). The fork() command returns 0 when called in the

child process, returns the process ID of the newly created (child) process when called in the parent process, and –1

on error. Therefore, the return value of the function call to fork() tells the process whether it is the parent or the

child. For a parent to keep track of its children, it should record the return values from call to fork(). (Note: If it is

desired to get the process ID of the parent, the child can obtain it by calling getppid command.) From this point one

can easily program the child process to serve the client’s request while the parent can keep accepting other requests.

However, when a child finishes and exits it needs to notify the parent that it is done.

PAGE: 14

This is where the waitpid() command comes to screen.(Please do a man page on this function to learn more about

it.)

We have seen how fork()can be used to handle multiple clients. But forking a new process is expensive, it duplicates the

entire state (memory, stack, file/socket descriptors …).Threads decrease this cost by allowing multitasking within the

same process. Both process and thread incurs overhead as they include creation, scheduling and context switching and

also as their numbers increases, this overhead increases.

Example : fork()

#include <stdio.h>

#include <stdlib.h>

#include <sys/types.h>

#include <sys/wait.h>

#include <unistd.h>

int main(void) {

 pid_t pid = fork();

 if(pid == 0) {

 printf("Child => PPID: %d PID: %d\n", getppid(), getpid());

 exit(EXIT_SUCCESS);

 }

 else if(pid > 0) {

 printf("Parent => PID: %d\n", getpid());

 printf("Waiting for child process to finish.\n");

 wait(NULL);

 printf("Child process finished.\n");
}

 else {

 printf("Unable to create child process.\n");

 }

 return EXIT_SUCCESS;

}

Output:
Parent => PID: 229

Waiting for the child process to finish.

Child => PPID: 229 PID: 230

Child process finished.

PAGE: 15

I. SOLVED EXERCISE ON CONCURRENT SERVERS

Write a TCP concurrent Echo server and simple client.

Server Program

#include<stdio.h>

#include<string.h>

#include<sys/types.h>

#include<sys/socket.h>

#include<netinet/in.h>

#define PORTNO 10200

int main()

{

int sockfd,newsockfd,portno,clilen,n=1;

char buf[256];

struct sockaddr_in seraddr,cliaddr;

int i,value;

sockfd = socket(AF_INET,SOCK_STREAM,0);

seraddr.sin_family = AF_INET;

seraddr.sin_addr.s_addr = inet_addr("172.16.59.10"); //**

seraddr.sin_port = htons(PORTNO);

bind(sockfd,(struct sockaddr *)&seraddr,sizeof(seraddr));

// Create a connection queue, ignore child exit details, and wait for clients

listen(sockfd,5);

while(1){

//Accept the connection

clilen = sizeof(clilen);

newsockfd=accept(sockfd,(struct sockaddr *)&cliaddr,&clilen);

//Fork to create a process for this client and perform a test to see whether

//you’re the parent or the child:

if(fork()==0){

// If you’re the child, you can now read/write to the client on newsockfd.

n = read(newsockfd,buf,sizeof(buf));

PAGE: 16

printf(" \nMessage from Client %s \n",buf);

n = write(newsockfd,buf,sizeof(buf));

close(newsockfd);

exit(0);

}

//Otherwise, you must be the parent and your work for this client is finished

else

close(newsockfd);

}

}

**- indicates replace this address with your systems IP address

Client Program remains same.

Steps for execution

1. Open three terminals

2. Terminal 1: $gcc server.c –o server

./server

3. Terminal 2 : $gcc client.c –o client1

./client1

4. Terminal 3: $gcc client.c –o client2

./client2

PAGE: 17

2. LAB EXERCISES

1. Write a TCP concurrent client server program where server accepts integer array from

client and sorts it and returns it to the client along with process id.

2. Implement concurrent Remote Math Server To perform arithmetic operations in the

server and display the result to the client. The client accepts two integers and an

operator from the user and sends it to the server. The server then receives integers and

operator. The server will perform the operation on integers and sends the result back

to the client which is displayed on the client screen. Then both the processes

terminate.

3. Implement simple TCP daytime server using select().

3. Lab Exercises:

1. Write a concurrent TCP daytime server ‘C’ program. Along with the result, server

should also send the process id to the client.

2. Write a concurrent TCP client-server ‘C’ program where the client accepts a

sentence from the user and sends it to the server. The server will check for

duplicate words in the string. Server will find the number of occurrences of

duplicate words present and remove the duplicate words by retaining single

occurrence of the word and send the resultant sentence to the client. The client

displays the received data on the client screen. The process repeats until the user

enters the string “Stop”. Then both processes terminate.

Additional Exercises:

 Q2.3) Write a concurrent TCP daytime server ‘C’ program. Along with the result, server

 should also send the process id to client.

Q2.4) Write a concurrent TCP client server ‘C’ program where the client accepts a

sentence from the user and sends it to the server. The server will check for duplicate

words in the string. Server will find the number of occurrences of duplicate words

present and remove the duplicate words by retaining single occurrence of the word and

send the resultant sentence to the client.

PAGE: 18

LAB NO: 3 Date:

Objectives:

• Understand UDP Client-Server Socket-Programming

• To monitor network data using Wireshark tool.

Perquisites:

• Understanding of connectionless service.

I. Introduction to User Datagram Protocol

Figure 3.1 Interaction between UDP client and Server.

PAGE: 19

System calls used in UDP:

1. Socket creation using socket() : Only difference in this call is its second parameter. For

TCP, we use stream sockets as data is transferred in the form of the stream whereas in

UDP, data is transmitted in the form of datagrams. So, the type of socket used for UDP

transmission is DATAGRAM socket. The system call should be used as follows.

sockfd = socket(AF_INET, SOCK_DGRAM, 0);

2. Exchange of data using sendto() and recvfrom(): As UDP does not establish the

connection, while sending datagram, it should specify the address of the receiver.

Syntax:

int sendto(int sockfd, const void *msg, int len, unsigned int flags,const struct sockaddr

*to, int tolen);

• sockfd: It is a socket descriptor returned by the socket function.

• msg: It is a pointer to the data you want to send.

• len: It is the length of the data you want to send (in bytes).

• flags: It is set to 0.

• to: It is a pointer to struct sockaddr for the host where data has to be sent.

• tolen: It is set it to sizeof(struct sockaddr).

• Return value will be number of bytes sent or -1 for error.

Similarly for receiving data, recvfrom is used and syntax is as follows

Syntax:

int recvfrom(int sockfd, void *buf, int len, unsigned int flags,struct sockaddr *from, int

*fromlen);

• sockfd: It is a socket descriptor returned by the socket function.

• buf: It is the buffer to read the information into.

• len: It is the maximum length of the buffer.

• flags: It is set to 0.

• from: It is a pointer to struct sockaddr for the host where data has to be

• read.

• fromlen: It is set it to sizeof(struct sockaddr).

• Return value will be number of bytes recieved or -1 for error.

PAGE: 20

INTRODUCTION TO WIRESHARK

Wireshark is a network packet analyzer. A network packet analyzer will try to capture network

packets and tries to display that packet data as detailed as possible.

Purposes:

• Network administrators use it to troubleshoot network problems.

• Network security engineers use it to examine security problems.

• Developers use it to debug protocol implementations.

• People use it to learn network protocol internals.

Getting started with Wireshark:

Figure 4.2: Welcome screen of Wireshark

• Choose the interface as “Ethernet”. Once an interface is selected, if the computer is

connected to the network and if there is some network traffic, the main window will be

displayed. Click on tthe “start capturing packets” button on the main toolbar.

The capture is split into 3 parts:

1. Packet List Panel – this is a list of packets in the current capture. It colors the packets

based on the protocol type. When a packet is selected, the details are shown in the two

panels below.

2. Packet Details Panel – this shows the details of the selected packet. It shows the

different protocols making up the layers of data for this packet. Layers include Frame,

Ethernet, IP, TCP/UDP/ICMP, and application protocols such as HTTP.

3. Packet Bytes Panel – shows the packet bytes in Hex and ASCII encodings.

Wireshark uses two types of filters, capture filters and display filters. Capture filters are used

to decide which packets should be kept. Only packets that meet filter criteria will be kept.

PAGE: 21

Display filters work after the capture is completed. They restrict which packets are shown, but

they don’t discard any information. Capture filters would be more useful on very busy

networks when you need to limit the amount of data your machine needs to process. On the

other hand, display filters don’t save any memory; display filters let you temporarily

focus on an analysis without losing any underlying information.

Capture filters can be set in two different places. Go to the Capture menu and select “Options”

and you will find a selection for capture filters. Alternatively, go to the Capture menu and

select “Capture Filters”. From the “Capture Filters” dialog box you will see a help menu that

will explain how the function works. Display filters can be entered at the top of the display

screen.

Display filters can be set as: Right click on the Source IP address field in the Packet Details

Panel. Select Prepare a Filter->Selected. Wireshark automatically generates a Display Filter

and applies it to the capture. The filter is shown in the Filter Bar, below the button toolbar.

Only packets captured with a Source IP address of the value selected should be displayed.

This same process can be performed on most fields within Wireshark and can be used to

include or exclude traffic.

SOLVED EXERCISE

Write a UDP Echo client server program.

Server Program:

#include<stdio.h>

#include<fcntl.h>

#include<stdlib.h>

#include<sys/socket.h>

#include<sys/types.h>

#include<netinet/in.h>

#include<arpa/inet.h>

#include<unistd.h>

int main()

{

int sd;

char buf[25];

struct sockaddr_in sadd,cadd;

PAGE: 22

//Create a UDP socket

sd=socket(AF_INET,SOCK_DGRAM,0);

//Construct the address for use with sendto/recvfrom... */

sadd.sin_family=AF_INET;

sadd.sin_addr.s_addr=inet_addr("172.16.56.10");//**

sadd.sin_port=htons(9704);

int result=bind(sd,(struct sockaddr *)&sadd,sizeof(sadd));

int len=sizeof(cadd);

int m=recvfrom(sd,buf,sizeof(buf),0,(struct sockaddr *)&cadd,&len);

printf("the server send is\n");

puts(buf);

int n=sendto(sd,buf,sizeof(buf),0,(struct sockaddr *)&cadd,len);

return 0;

}

**- indicates replace this address with your systems IP address

Client program

#include<stdio.h>

#include<stdlib.h>

#include<fcntl.h>

#include<sys/socket.h>

#include<sys/types.h>

#include<netinet/in.h>

#include<arpa/inet.h>

#include<unistd.h>

int main()

{

int sd;

struct sockaddr_in address;

sd=socket(AF_INET,SOCK_DGRAM,0);

address.sin_family=AF_INET;

address.sin_addr.s_addr=inet_addr("172.16.56.10");//**

address.sin_port=htons(9704);

PAGE: 23

char buf[25],buf1[25];

printf("enter buf\n");

gets(buf);

int len=sizeof(address);

int m=sendto(sd,buf,sizeof(buf),0,(struct sockaddr *)&address, len);

int n=recvfrom(sd,buf,sizeof(buf),0,(struct sockaddr *)&address,&len);

printf("the server echo is\n");

puts(buf);

return 0;

}

**- indicates replace this address with your systems IP address

LAB EXERCISES:

1. Write a UDP client-server program where the client sends rows of a matrix, and the

server combines them together as a matrix.

2. Write a client program to send a manually crafted HTTP request packet to a Web Server

and display all fields received in HTTP Response at client Side.

2. Analyzing UDP datagrams using Wireshark:

• Start your web browser and clear the browser's cache memory, but do not access any

website yet.

• Open Wireshark and start capturing.

• Go back to your web browser and retrieve any file from a website. Wireshark starts

capturing packets.

• After enough packets have been captured, stop Wireshark, and save the captured file.

• Using the captured file, analyze TCP & UDP packets captured

.Note: DNS uses UDP for name resolution & HTTP uses TCP
Using the captured information, answer the following questions in your lab report.

A. In the packet list pane, select the first DNS packet. In the packet detail pane, select the

User Datagram Protocol. The UDP hexdump will be highlighted in the packet byte lane.

Using the hexdump, Answer the following:

a. the source port number.

b. the destination port number.

c. the total length of the user datagram.

d. the length of the data.

PAGE: 24

e. whether the packet is directed from a client to a server or vice versa.

f. the application-layer protocol.

g. whether a checksum is calculated for this packet or not.

B. What are the source and destination IP addresses in the DNS query message? What are those

addresses in the response message? What is the relationship between the two?

C. What are the source and destination port numbers in the query message? What are those

addresses in the response message? What is the relationship between the two? Which port

number is a well-known port number?

D. What is the length of the first packet? How many bytes of payload are carried by the first

packet?

2b. Analyzing TCP packets using Wireshark:

Start your web browser and clear the browser's cache memory, but do not access any website yet.

■ Open Wireshark and start capturing.

■ Go back to your web browser and retrieve any file from a website. Wireshark starts capturing

packets.

■ After enough packets have been captured, stop Wireshark and save the captured file.

■ Using the captured file, select only those packets that use the service of TCP. For this purpose,

type tcp (lowercase) in the filter field and press Apply. The packet list pane of the Wireshark

window should now display a bunch of packets.

Part I: Connection-Establishment Phase

Identify the TCP packets used for connection establishment. Note that the last packet used for

connection establish may have the application-layer as the source protocol.

Questions

Using the captured information, answer the following question in your lab report about packets

used for connection establishment.

1. What are the socket addresses for each packet?

2. What flags are set in each packet?

3. What are the sequence number and acknowledgment number of each packet?

4. What are the window size of each packet?

PAGE: 25

Part II: Data-Transfer Phase

The data-transfer phase starts with an HTTP GET request message and ends with an HTTP OK

message.

Questions

Using the captured information, answer the following question in your lab report about packets

used for data transfer.

1. What TCP flags are set in the first data-transfer packet (HTTP GET message)?

2. How many bytes are transmitted in this packet?

3. How often does the receiver generate an acknowledgment? To which acknowledgment rule

(defined in Page 200 in the textbook) does your answer correspond to?

4. How many bytes are transmitted in each packet? How are the sequence and acknowledgment

numbers related to number of bytes transmitted?

5. What are the original window sizes that are set by the client and the server? Are these numbers

expected? How do they change as more segments are received by the client?

6. Explain how the window size is used in flow control?

7. What is the purpose of the HTTP OK message in the data transfer phase?

Part III: Connection Termination Phase

The data-transfer phase is followed by the connection termination phase. Note that some packets

used in the connection-termination phase may have the source or sink protocol at the application

layer. Find the packets used for connection termination.

Questions

Using the captured information, answer the following question in your lab report about packets

used for connection termination.

1. How many TCP segments are exchanged for this phase?

2. Which end point started the connection termination phase?

3. What flags are set in each of segments used for connection termination?

PAGE: 26

II. LAB EXERCISES

1. From the captured information, answer the following question in your lab report.

i. Using the hexdump, determine the following for any TCP packet:

The source port number, the destination port number, the sequence number, the

acknowledgment number, the header length, the set flags, the window size and the urgent

pointer value.

ii. Using the information in the detail pane lane, verify your answers is question 1.

iii. Does any of the TCP packet header carry options? Explain your answer.

iv. What is the size of a TCP packet with no options. What is the size of a TCP packet

with options?

v. Is window size in any of the TCP packet zero? Explain your answer.

2. Analyze Interaction between your TCP Client-Server Programs using wireshark

3. Analyze Interaction between your UDP Client-Server Programs using wireshark

PAGE: 27

LAB NO: 4 Date:

Network Data Analysis using tcpdump

Objectives

• Understanding the network analysis tool - tcpdump

Network Analysis tool

Network Analysis tools are used to identify problems in the network, as well as to help

understand the behavior of network protocols. We will use these tools extensively in the

experiments.

Tcpdump:

Tcpdump is a network traffic sniffer built on the packet capture library libpcap. While started, it

captures and displays packets on the LAN segment. By analyzing the traffic flows and the packet

header fields, a great deal of information can be gained about the behavior of the protocols and

their operation within the network. Problems in the network can also be identified. A packet filter

can be defined in the command line with different options to obtain a desired output.

Basics

Below are a few options you can use when configuring tcpdump.

Options

▪ -i any : Listen on all interfaces just to see if you’re seeing any traffic.

▪ -I eth0 : Listen on the eth0 interface.

▪ -D : Show the list of available interfaces

▪ -n : Don’t resolve hostnames.

▪ -nn : Don’t resolve hostnames or port names.

▪ -q : Be less verbose (more quiet) with your output.

▪ -t : Give human-readable timestamp output.

▪ -tttt : Give maximally human-readable timestamp output.

▪ -X : Show the packet’s contents in both hex and ascii.

▪ -XX : Same as -X, but also shows the ethernet header.

https://en.wikipedia.org/wiki/Hexidecimal
https://en.wikipedia.org/wiki/Ascii

PAGE: 28

tcpdump -i any

▪ -v, -vv, -vvv : Increase the amount of packet information you get back.

▪ -c : Only get x number of packets and then stop.

▪ -s : Define the snaplength (size) of the capture in bytes. Use

you are intentionally capturing less.

▪ -S : Print absolute sequence numbers.

▪ -e : Get the ethernet header as well.

▪ -q : Show less protocol information.

▪ -E : Decrypt IPSEC traffic by providing an encryption key.

Expressions

to get everything, unless

In tcpdump, Expressions allow you to trim out various types of traffic and find exactly what

you’re looking for. Mastering the expressions and learning to combine them creatively is what

makes one truly powerful with tcpdump.

There are three main types of expression: type, dir, and proto.

▪ Type options are: host, net, and port.

▪ Direction lets you do src, dst, and combinations thereof.

▪ Proto(col) lets you designate: tcp, udp, icmp, ah, and many more.

Examples

So, now that we’ve seen what our options are, let’s look at some real-world examples that we’re

likely to see in our everyday work.

BASIC COMMUNICATION

By looking at all interfaces.

-s0

PAGE: 29

src dst

port

tcpdump -i eth0

tcpdump -ttttnnvvS

tcpdump host 1.2.3.4

tcpdump src 2.3.4.5

tcpdump dst 3.4.5.6

tcpdump net 1.2.3.0/24

tcpdump port 3389

tcpdump src port 1025

SPECIFIC INTERFACE

FIND TRAFFIC BY IP

One of the most common queries, this will show you traffic from 1.2.3.4, whether it’s the source

or the destination.

FILTERING BY SOURCE AND DESTINATION

FINDING PACKETS BY NETWORK

To find packets going to or from a particular network, use the netoption. You can combine this

with the or options as well.

SHOW TRAFFIC RELATED TO A SPECIFIC PORT

You can find specific port traffic by using the option followed by the port number.

PAGE: 30

-w

tcpdump ip6

tcpdump portrange 21-23

tcpdump less 32

tcpdump greater 64

tcpdump <= 128

tcpdump port 80 -w capture_file

SHOW TRAFFIC OF ONE PROTOCOL

SHOW ONLY IP6 TRAFFIC

FIND TRAFFIC USING PORT RANGES

You can also use a range of ports to fin traffic.

FIND TRAFFIC BASED ON PACKET SIZE

WRITING CAPTURES TO A FILE

It’s often useful to save packet captures into a file for analysis in the future. These files are

known as PCAP (PEE-cap) files, and they can be processed by hundreds of different

applications, including network analyzers, intrusion detection systems, and of course by

 itself. Here we’re writing to a file called capture_file using the switch.

tcpdump icmp

PAGE: 31

-r

tcpdump -r capture_file

tcpdump -nnvvS src 10.5.2.3 and dst port 3389

READING PCAP FILES

You can read PCAP files by using the switch. Note that you can use all the regular commands

within tcpdump while reading in a file; you’re only limited by the fact that you can’t capture and

process what doesn’t exist in the file already.

Advanced

FROM SPECIFIC IP AND DESTINED FOR A SPECIFIC PORT

Let’s find all traffic from 10.5.2.3 going to any host on port 3389.

I. LAB EXERCISES:

1. While tcpdump host your_host is running in one command window, run ping 127.0.0.1 from

another command window. From the ping output, is the 127.0.0.1 interface on? Can you see any

ICMP message sent from your host in the tcpdump output? Why?

2. While tcpdump host your_host is running to capture traffic from your machine, execute telnet

128.238.66.200. Note there is no host with this IP address in the current configuration of the lab

network. Save the tcpdump output of the first few packets for the lab report. After getting the

necessary output, terminate the telnet session. From the saved tcpdump output, describe how the

ARP timeout and retransmission were performed. How many attempts were made to resolve a

non-existing IP address?

3. Briefly explain the purposes of the following tcpdump expressions.

a. tcpdump udp port 520

b. tcpdump -x -s 120 ip proto 89

c. tcpdump -x -s 70 host ip addr1 and (ip addr2 or ip addr3)

d. tcpdump -x -s 70 host ip addr1 and not ip addr2

PAGE: 32

4. Basic packet decoding

1) Write a tcpdump command to dump network traffic from an Ethernet connection to the

screen in human readable output format. Perform the following operation and write down

the observations.

a) Capture all the traffic of maximum snap length of 65,535 bytes and provide the

hexadecimal and ASCII decodes of all the traffic in each packet.

b) Find the IP addresses, IP packet length, TCP port numbers, TCP flags, etc. by using

the reference chart to locate those fields on the hexadecimal dump.

PAGE: 33

LAB No 5 Date:

Computer Network Design using HUB in GNS3

Objectives:

• Study of network simulator GNS3.

• To Learn Static IP address Assignment.

• To study the characteristics of HUB devices.

Introduction to GNS3

GNS3 is a free graphical network simulator capable of emulating a number of network

devices. Supported devices include Cisco routers and firewalls, Juniper routers, and frame-relay

switches. With this software, users get an easy-to-use interface that allows them to build

complex labs consisting of a variety of supported Cisco routers. GNS3 works by using real Cisco

IOS images which are emulated using a program called Dynamips.

Some Supported GNS3 Features

• Design of high quality and complex network topologies

• Emulation of many Cisco router platforms and PIX firewalls

• Simulation of simple Ethernet, ATM and Frame Relay switches

• Connection of the simulated network to the real world

• Packet capture using Wireshark.

II. Screen Layout

The following figure shows a screenshot of the GNS graphical user interface:

PAGE: 34

Figure 5.1 GNS graphical user interface

GNS3 Workspace: The GNS3 workspace is the area of GNS3 where you create topologies by

adding devices and links.

Figure 5.2 GNS workspace

Devices Toolbar: The devices toolbar allows you to add devices to your network topology. You

do this by dragging devices from the Toolbar to the GNS3 workspace.

.

Figure 5.3 GNS Devices Toolbar

The devices toolbar is grouped into different types by default:

Routers:

GNS3 requires one or more Cisco IOS images to run on your virtual Dynamips routers, and

GNS3 does not provide them. Images can be copied from a router you own or through a Cisco

PAGE: 35

connection online (CCO) account if you have a contract with Cisco. For the lab purpose, we

have downloaded Cisco 3600 IOS image and Cisco 3700 IOS image from the net.

Figure 5.4 GNS Router

Switches:

Switching is done with only “Ethernet Switch” unless specified otherwise in the lab. When

connecting to a switch select unused ports for new connections.

Figure 5.5 GNS Switch

Virtual PCs:

VPCS are lightweight Linux machine emulators. Each one runs within a single process, it has

many limitations such as lacking a full Linux command list, as well as only having a single

interface.

PAGE: 36

Figure 5.6 GNS VPCS

Add Links:

Adding links is simple.

1. Click the icon shown to the right.

2. Click on the target and select which port to attach a virtual connection to, do the same with

the next target.

Figure 5.7 GNS Links

III. Using the GNS3 Toolbar

The GNS3 toolbar contains several groups of icons that are roughly organized by function and

offer a simple way to get things done. The first group deals with projects, the second with links,

the third with devices and snapshots, and the fourth with additional ways to visually organize

your projects.

First Toolbar Group

The first group of toolbar icons, shown in Figure 5.8, deals with actions that affect entire

projects.

From left to right, these icons are as follows:

New blank project Creates a new project folder and allows you to choose what to name your

project.

PAGE: 37

Open project Opens a previously saved project. To open a project, choose the project folder

name and select the file named <project_name>.gns3.

Save project Saves a complete project to the GNS3 projects folder. By default, a PNG image file

of your workspace is saved with your project.

Figure 5.8: First toolbar group

Second Toolbar Group

The buttons in the second group of toolbar icons, shown in Figure 5.9, allow you to create

project snapshots, show or hide interface labels, and connect to your devices using the virtual

console port on your devices.

From left to right, these icons are as follows:

Snapshot Creates a snapshot of your devices, links, and IOS configurations to record the state of

your workspace at that time. You can save more than one snapshot and revert to a saved snapshot

at any time. Options are Create, Delete, Restore, and Close.

Show interface labels Shows or hides interface names used by a link. These labels are

abbreviated and displayed with devices in your workspace (for example, f0/0 is displayed for

FastEthernet0/0).

Console connect to all devices Opens a console connection to all running routers in your

workspace.

Figure 5.9: Second toolbar group

Third Toolbar Group

The third group of toolbar icons, shown in Figure 5.10, primarily deals with controlling devices.

Figure 5.10: Third toolbar group

From left to right, these four icons are as follows:

Start/Resume all devices Starts all stopped devices or resumes all suspended devices in your

workspace.

PAGE: 38

Suspend all devices Places all suspend-capable devices in a suspended state.

Stop all devices Stops all devices.

Reload all devices Reloads all devices. Be sure to save your router configurations and project

before reloading or else you might lose your configurations.

Fourth Toolbar Group

The final group of toolbar icons, shown in Figure 5.11, provides tools to present your network

layouts more clearly. You can add objects such as rectangles and ellipses to your project, and

even generate a screenshot of your workspace.

Figure 5.11: Fourth toolbar group

From left to right, the icons in the last toolbar group are as follows:

Add a note Creates text annotations in your workspace. Double-click text to modify it, and

right-click the text object to change the Style attributes (such as font size and color). You can

also rotate text objects from 0 to 360 degrees.

Insert a picture Adds images and logos to your projects. GNS3 supports PNG, JPG, BMP,

XPM, PPM, and TIFF file formats.

Draw a rectangle draws dynamically sizable rectangles. You can right click a rectangle object to

change the Style attributes for border and border color. Rectangle objects can be rotated from 0

to 360 degrees.

Draw an ellipse draws dynamically sizable ellipses. You can right-click an ellipse object to

change the border style and color.

Zoom in Zooms in your workspace to see details.

Zoom out Zooms out of your workspace for a bigger bird’s-eye view.

Screenshot Generates a screenshot of your workspace. The image can be saved as a PNG, JPG,

BMP, XPM, PPM, or TIFF file and by default is saved in your GNS3/projects folder.

Objects (notes, pictures, and shapes) that you add to your workspace can be grouped into layers.

To raise or lower an object, right-click the object and select Raise one layer or Lower one layer.

This feature allows you to manipulate objects in a layer without affecting other layers. You can

display layer positions for your objects by choosing View->Show Layers from the menu, which

is useful during advanced layer manipulation. By adding shapes and colors with this toolbar, you

PAGE: 39

can divide network components into logical groups. With text, you can add notes and reminders

about how your project is configured.

IV. Address Resolution Protocol (ARP) and Reverse Address Resolution Protocol (RARP)

The ARP and RARP protocols perform the translation between IP addresses and MAC layer

addresses. We will discuss ARP for broadcast LANs, particularly Ethernet LANs

Figure 5.12: Information Exchange

• ARP Packet

Fig. 5.13 ARP Packet

• Encapsulation of ARP Packet

PAGE: 40

Fig. 5.14 ARP Packet

Illustration of Address Translation with ARP

ARP Request: Argon broadcasts an ARP request to all stations on the network: “What is the

hardware address of Router137?”

Figure 5.15:ARP Request

ARP Reply: Router 137 responds with an ARP Reply which contains the hardware address

Figure 5.16: ARP Reply

Address Translation done for the above illustration:

ARP Request from Argon:

Source hardware address: 00:a0:24:71:e4:44

Source protocol address: 128.143.137.144

PAGE: 41

Target hardware address: 00:00:00:00:00:00

Target protocol address: 128.143.137.1

ARP Reply from Router137:

Source hardware address: 00:e0:f9:23:a8:20

Source protocol address: 128.143.137.1

Target hardware address: 00:a0:24:71:e4:44

Target protocol address: 128.143.137.144

V. SOLVED EXERCISE:

When you first start GNS3, you will be prompted to create a project

Figure 5.17:New Project Window

Name the project as desired and then click OK.

Working with VPCS

1. Drag and drop the VPCS node (device) to the GNS3 Workspace. An instance of the node

becomes available in the Workspace. In this example a new VPCS with the name PC1 is

now available:

PAGE: 42

Figure 5.18: Dragging of First VPCS

2. Drag and drop the VPCS node again into the GNS3 Workspace. In this example, another

VPCS was added to the GNS3 workspace (PC2):

Figure 5.19:Dragging of Second VPCS

3. Click the Add a Link button to start adding links to your topology. The mouse cursor

will change to indicate that links can be added:

Figure 5.20: Add a Link button

4. Click on PC1 in your topology to display available interfaces. In this

example Ethernet0 is available (this is device dependent):

PAGE: 43

Figure 5.21: Ethernet0 of PC0 is displayed

5. Click Ethernet0 on PC1 and select PC2

:

Figure 5.22: Ethernet0 of PC1 is displayed

6. Select Ethernet0 on R2 to complete the connection:

PAGE: 44

Figure 5.23: Connection Complete

7. Click the Show/Hide interface labels button on the GNS3 Toolbar to display interface

labels in your topology

Figure 5.24: Show/Hide Interface Labels Button

8. Power on your network devices by clicking the Start/Resume button on the GNS3

Toolbar to start up your network devices:

PAGE: 45

Figure 5.25: Start/Resume button

9. GNS3 indicates that the devices have been powered on by turning the interface

connectors from red to green. This can also be seen in the Topology Summary:

 Figure 5.26: Topology Summary

PAGE: 46

10. You are now ready to configure your devices. Click the Console connect to all

devices button on the GNS3 Toolbar to open a connection to every device in the

topology:

Figure 5.27: Console connect to all devices button

11.A console connection is opened to every device in the topology

Figure 5.28: Console connection

12. Configure your PCs with IP addresses and default gateways as follows (a default gateway is

configured in this example but is not used):

PAGE: 47

Syntax of IP address configuration:

ip ip-address network-mask default-gateway

PC1> ip 10.1.1.1 255.255.255.0 10.1.1.254

PC2> ip 10.1.1.2 255.255.255.0 10.1.1.254

13. PC1 should now be able to ping PC2 (use the key sequence Ctrl-C to stop the ping):

PC1> ping 10.1.1.2

Result Pings succeed.

14. To capture packets using Wireshark, right-click on the link and select Start Wireshark.

PAGE: 48

VI. LAB EXERCISES:

1. Design network configuration shown in Figure 5.29 for all parts. Connect all four VMs to a

single Ethernet segment via a single hub as shown in Figure 5.29. Configure the IP addresses for

the PCs as shown in Table 6.1.

Figure 5.29: Network Design

Table 5.1: IP Address of PCs

a. On PC1, view the ARP cache with show arp

b. Start Wireshark on PC1-Hub1 link with a capture filter set to the IP address of PC2.

c. Issue a ping command from PC1 to PC2: PC1% ping 10.0.1.13 –c 3

Observe the ARP packets in the Wireshark window. Explore the MAC addresses in the

Ethernet headers of the captured packets.

Direct our attention to the following fields:

PAGE: 49

• The destination MAC address of the ARP Request packets.

• The Type Field in the Ethernet headers of ARP packets.

d. View the ARP cache again with the command arp -a. Note that ARP cache entries can get

refreshed/deleted fairly quickly (~2 minutes).

show arp

e. Save the results of Wireshark.

2. To observe the effects of having more than one host with the same (duplicate) IP address

in a network.

After completing Exercise 1, the IP addresses of the Ethernet interfaces on the four PCs are as

shown in Table 6.2 below. Note that PC1 and PC4 are assigned the same IP address.

Table 5.2: IP addresses

a. Delete all entries in the ARP cache on all PCs.

b. Run Wireshark on PC3-Hub1 link and capture the network traffic to and from the duplicate IP

address 10.0.1.11.

c. From PC3, issue a ping command to the duplicate IP address, 10.0.1.11, by typing

PC3% ping 10.0.1.11 –c 5

d. Stop Wireshark, save all ARP packets and screenshot the ARP cache of PC3 using

PAGE: 50

the arp –a command:

PC3% arp – a

e. When you are done with the exercise, reset the IP address of PC4 to its original value as given

in Table 6.1.

3. To test the effects of changing the netmask of a network configuration.

a. Design the configuration as Exercise 1 and replace the hub with a switch, two hosts (PC2

and PC4) have been assigned different network prefixes.

Setup the interfaces of the hosts as follows:

VPCS IP Address of eth0 Network Mask

PC1 10.0.1.100 / 24 255.255.255.0

PC2 10.0.1.101 / 28 255.255.255.240

PC3 10.0.1.120 / 24 255.255.255.0

PC4 10.0.1.121 / 28 255.255.255.240

b. Run Wireshark on PC1-Hub1 link and capture the packets for the following scenarios

i. From PC1 ping PC3.

ii. From PC1 ping PC2.

iii. From PC1 ping PC4.

iv. From PC4 ping PC1.

v. From PC2 ping PC4.

PAGE: 51

vi. From PC2 ping PC3.

c. Save the Wireshark output to a text file (using the “Packet Summary” option from “Print”) ,

and save the output of the ping commands. Note that not all of the above scenarios are

successful. Save all the output including any error messages.

d. When you are done with the exercise, reset the interfaces to their original values as given

Table 6.1. (Note that /24 corresponds to network mask 255.255.255.0. and /28 to network

mask 255.255.255.240).

VII. EXERCISES

Based On Lab Question 1

• What is the destination MAC address of an ARP Request packet?

• What are the different Type Field values in the Ethernet headers that you observed?

• Use the captured data to analyze the process in which ARP acquires the MAC address for IP

address 10.0.1.12.

Based On Lab Question 2

• Explain how the ping packets were issued by the hosts with duplicate addresses.

• Did the ping command result in error messages?

• How can duplicate IP addresses be used to compromise the data security?

• Give an example. Use the ARP cache and the captured packets to support your explanation.

Based On Lab Question 3

• Use your output data and ping results to explain what happened in each of the ping commands.

• Which ping operations were successful and which were unsuccessful? Why?

PAGE: 52

LAB No 6 Date:

Computer Network Design using SWITCH and ROUTERS in GNS3

Objectives:

• To Learn about IP address Assignment for different subnetworks

• To study the functions of ROUTER device

• To study the functions of SWITCH device

I. Introduction to Router Configuration

Setting Up of IOS Router:

Adding IOS Images to GNS3

Before you start creating projects using IOS routers, add at least one IOS image to GNS3 for

example in Figure 6.1 , c3745 router image has been selected.

Figure 6.1: IOS routers preferences

Click New to start the wizard and then click the Browse button to locate your image file.

After selecting your image file, you’ll be asked whether you would like to decompress the IOS

image

PAGE: 53

Figure 6.2: Deciding whether to decompress the IOS image

It’s a good idea to let GNS3 decompress your image files; otherwise, your routers will

have to decompress the images every time a router loads. Decompressing the images ahead of

time will make your routers boot much faster. After decompressing your image, click Next, and

GNS3 will attempt to recognize the router platform that your IOS belongs to, as shown in Figure

6.3.

Figure 6.3: Name and platform screen

GNS3 has determined that my image file belongs to a c3745 router platform and has

automatically named it c3745.

In general, from here, you can just click through all the configuration settings to configure a

basic router model, but the wizard provides opportunities for you to customize router memory

and other features during this process. For now, click Next to continue. You should be presented

with the Memory screen, shown in Figure 6.4.

PAGE: 54

Figure 6.4: IOS Memory screen

Your routers should run fine with the default memory setting. When you’re done, click

Next, and you will be presented with the Network adapters screen, as shown in Figure 6.5.

Figure 6.5: Network adapters screen

The default setting configures your router with the same standard options that are

provided with a real model of the same Cisco router. If you would like to add more interfaces,

use the drop-down menu next to the available slots and choose the desired network modules. The

slot options will be limited to actual options that are available in the real version of the Cisco

PAGE: 55

router. When you’re done, click Next and choose any WIC modules that you would like to

install. Then click Next again to display the Idle-PC screen, shown in Figure 6.6.

Figure 6.6: Idle-PC screen

If you start a router in GNS3 without an Idle-PC setting, your computer’s CPU usage will

quickly spike to 100 percent and remain there. This happens because Dynamips doesn’t yet know

whether your virtual router is doing something that requires system resources, so it

overcompensates by giving it all the resources it can. GNS3 will run sluggishly until this is

corrected, and if CPU usage is left at 100 percent for a long time, your PC’s processor could

overheat.

You can easily fix this by having GNS3 look for places in the IOS program code where an idle

loop exists (idle loops cause the CPU to spike); the result of this calculation is called an Idle-PC

value. When the proper Idle-PC value is applied, Dynamips should periodically sleep the router

when these idle loops are executed, which greatly reduces CPU usage.

To have GNS3 automatically find a value, click the Idle-PC finder button, and GNS3 will

attempt to search for a value. If GNS3 finds a suitable value, then you’re done; click Finish. If

it’s unsuccessful, leave the field blank and click Next to save the router without an Idle-PC

configuration.

To Start with the Lab exercise, create a topology as shown in Figure 6.7:

0

 PAGE: 6

NOTE: The Cisco routers in GNS3 sometimes start up in Privileged instead of the User EXEC mode.

Figure 6.7: Network Topology

you will get a red light first.

II. LAB EXERCISES

1. Switching Cisco IOS Command Modes

This exercise demonstrates how to log into a router and how to work with the different Cisco

IOS command modes. It is important to understand the different modes so you know where you

are and what commands are accepted at any time.

i. Connect the Ethernet interfaces of the Linux PCs and the Cisco router as shown in Figure 6.7.

Do not turn on the Linux PCs yet.

ii. Right-click on Router1 and choose Start.

iii. Right-click on Router1 and choose Console. Wait a few seconds until the router is initialized.

If everything is fine, you should see the prompt shown below. This is the User EXEC mode. If

the prompt does not appear, try to restart GNS3 and repeat the setup again.

Router1>

iv. To see which commands are available in this mode, type ?:

Router1>?

v. To view and change system parameters of a Cisco router, you must enter the Privileged EXEC

mode by typing:

Router1>enable

Router1#

vi. Type the following command to disable the Privileged EXEC mode

Router1# disable

PAGE: 61

vii. To modify system wide configuration parameters, you must enter the global configuration

mode. This mode is entered by typing:

Router1#configure terminal

Router1(config)#

or

Router1#conf t

Router1(config)#

viii. To make changes to a network interface, enter the interface configuration mode, with the

command:

Router1(config)#interface FastEthernet0/0

Router1(config-if)#

The name of the interface is provided as an argument. Here, the network interface that is

configured is FastEthernet0/0.

ix. To return from the interface configuration to the global configuration mode, or from the

global configuration mode to the Privileged EXEC mode, use the exit command:

Router1(config-if)#exit

Router1(config)#exit

Router1#

The exit command takes you one step up in the command hierarchy. To directly return to the

Privileged EXEC mode from any configuration mode, use the end command:

Router1(config-if)#end

Router1#

x. To terminate the console session from the User EXEC mode, type logout or exit:

Router1>logout

Router con0 is now available

Press RETURN to get started

2. Configuring a Cisco Router via the console

The following exercises use basic commands from the Cisco IOS that are needed to configure a

Cisco router.

PAGE: 62

Note: In IOS Mode under Global Configuration,we can enable or disable IP Forwarding. When it is

disabled it also deletes the contents of the routing table.

Router1(config)#ip routing

Router1(config)#no ip routing

In IOS Mode under Interface Configuration,we can enable or disable a network interface

Router1(config-if)#no shutdown

Router1(config-if)#shutdown

i. Right-click on Router1 and choose Start.

ii. Right-click on Router1 and choose Console. Wait some seconds until the initial console

window is set up. When the router is ready to receive commands, proceed to the next step.

iii. Configure Router1 and Router 2 with the IP addresses given in Figure 6.7.

In Router 1

Interface Fastethernet0/0 in global configuration mode

R1(config)#inter f 0/0

R1(config-if)#ip address 10.0.0.1 255.0.0.0

R1(config-if)#no shutdown

R1(config-if)#exit

Interface Serial 2/0

R1(config)#inter s2/0

R1(config-if)#ip address 20.0.0.1 255.0.0.0

R1(config-if)#clock rate 64000

R1(config-if)#encapsulation ppp

R1(config-if)#no shutdown

R1(config-if)#exit

In Router 2

Interface Fastethernet 0/0

R2(config)#inter f0/0

R2(config-if)#ip address 30.0.0.1 255.0.0.0

R2(config-if)#no shutdown

R2(config-if)#exit

Interface Serial 2/0

R2(config)#inter s2/0

R2(config-if)#ip address 20.0.0.2 255.0.0.0

R2(config-if)#encapsulation ppp

R2(config-if)#no shutdown

Tip: “no ip routing” is used to guarantee that the routing cache is empty, not routing table.

PAGE: 63

Tip to save Time: It will be tiring to manually type in the configuration data for a router, everytime

you set a lab, you can save time by saving all this configurations in an excel file and simply copying

and pasting in the router console window.

Note: Whenever an IP address is configured for a network interface on a router, routing

table entries for the directly connected network are added automatically.

R2(config-if)#exit

iv. When you are done, use the following command to check the changes you made to the router

configuration, and save the outputs:

R1# show interfaces

R1#show running-config

v. Assign ip addresses for both PC's as mentioned in Figure 6.7 with appropriate ip and subnet

mask and default gateway.

3. Setting static routing table entries on a Cisco router

In this exercise, you will add static routes to the routing table of Router1. The routing table must

be configured so that it conforms to the network topology shown in Figure 6.7. The routes are

configured manually, which is also referred to as static routing.

The IOS command to configure static routing is ip route. The command can be used to show,

clear, add, or delete entries in the routing table. The commands are summarized in the list below.

PAGE: 64

By default, Routers know only directed connected networks here Router 1 know only 10.0.0.0

and 20.0.0.0 it doesn't know the 30.0.0.0 like this R2 doesn't know about 10.0.0.0.So we are

going to add Static route to this both router.

R1(config)#ip route Destination Network| Destination N/W Subnet Mask |Next Hop

Address

In Router R1, just give this command, in this case Destination is 30.0.0.0 and its subnet mask is

255.0.0.0 next hop address is 20.0.0.2

R1(config)#ip route 30.0.0.0 255.0.0.0 20.0.0.2

In Router R2

R2(config)#ip route 10.0.0.0 255.0.0.0 20.0.0.1

Now both routers know all the networks.

i. Issue a ping command from PC1 to PC2, Router1 and PC4, respectively

ii. Save the captured Wireshark output.

iii. Use the saved data to answer the following questions:

• What is the output on PC1 when the ping commands are issued?

• Which packets, if any, are captured by Wireshark?

• Do you observe any ARP packets? If so, what do they indicate?

 II. In the CSE department, two students sitting in two different labs want to establish a

 connection and send the data. So, configure the below network topology as shown in Figure.

 6.8 and check the connectivity by pinging from PC0 to PC2.

PAGE: 65

Fig: 6.8 Additional Lab Topology

PAGE: 66

LAB No 7 Date:

Study of Domain Name Server

Objectives:

• To illustrate the significance of Domain Name Server

• To Study the information exchanged between DNS and Clients

I. Introduction

DNS (Domain Name Servers)

Computers and other network devices on the Internet use an IP address to route the client request

to required website. It’s impossible for us to remember all the IP addresses of the servers we

access every day. Hence we assign a domain name for every server and use a protocol called

DNS to turn a user-friendly domain name like "howstuffworks.com" into an Internet Protocol

(IP) address like 70.42.251.42 that computers use to identify each other on the network. In other

words, DNS is used to map a host name in the application layer to an IP address in the network

layer. DNS is a client/server application in which a domain name server, also called a DNS

server or name server, manages a massive database that maps domain names to IP addresses.

Client requests for address resolution which is defined as mapping a name to an address or an

address to a name. It can be done in a recursive fashion or in an iterative fashion.

II. LAB EXERCISES

1. Configure the below topology to setup DNS server. R1 will use R2 as DNS server to make

DNS resolutions.

First, lets begin with R1. We’ll setup hostname and IP related information.

Figure 7.1 : Network Topology for DNS Configuration

PAGE: 67

R1 IP configurations:

Enable

configure terminal

hostname R1

interface e0/0

ip address 10.10.10.1 255.255.255.0

no shut

do wr

end

R2 IP and Hostname Configurations:

enable

config t

hostname R2

int e0/0

ip address 10.10.10.2 255.255.255.0

no shut

do wr

end

Setting up R2 as DNS Server

config t

ip dns server

ip host loopback.R2.com 2.2.2.2

We mapped loopback.R2.com to ip address 2.2.2.2. Currently, we don’t have 2.2.2.2, we could

create loopback interface on R2 and assign ip 2.2.2.2.

interface loopback 1

ip address 2.2.2.2 255.255.255.255

PAGE: 68

end

Let’s verify that loopback interface we just created is working. This will show us that the

hostname correctly setup locally on R2.

ping loopback.R2.com

Now it’s time to setup R1 to resolve hostnames using R2. On R1 type;

config terminal

ip domain lookup

ip name-server 10.10.10.2

Set R1 to use R2 as default gateway to get to loopback interface on R2. So that after R1

resolves loopback.R2.com, it can reach 2.2.2.2 through its default route (R2).

on R1 type:

config t

ip route 0.0.0.0 0.0.0.0 10.10.10.2

end

This tells our router that to get to any network not in it’s routing table, it’s next hop is 10.10.10.2

which is our router R2.

Now on R1, do a ping to loopback.R2.com and you should get a success message.

ping loopback.R2.com repeat 3

If you captured the traffic, you’ll see DNS query and Answer as shown in Wireshark capture

screen shot below.

PAGE: 69

Figure 7.2 : Observation in WIRESHARK

III. LAB EXERCISE

Suppose you are connecting to www.mycsemit.com to read a page, you are a

user sitting at a client's machine. You can access the www.mycsemit.com web

server. The server machine finds the page you requested and sends it to you.

Build a scenario using GNS3 to demonstrate the interaction of the DNS Server

and DNS Client. Place DNS Server behind two routers.

PAGE: 70

LAB No 8 Date:

Study of DHCP Server

Objectives:

• Understand DHCP Service

• Analyzing DHCP Packets

• Understanding significance of Netmask value

DHCP Overview

The Dynamic Host Configuration Protocol (DHCP) is based on the Bootstrap Protocol

(BOOTP), which provides the framework for passing configuration information to hosts

on a TCP/IP network. DHCP adds the capability to automatically allocate reusable

network addresses and configuration options to Internet hosts. DHCP consists of two

components: a protocol for delivering host-specific configuration parameters from a

DHCP server to a host and a mechanism for allocating network addresses to hosts. DHCP

is built on a client/server model, where designated DHCP server hosts allocate network

addresses and deliver configuration parameters to dynamically configured hosts.

LAB EXERCISES

Configure two VMs that will be used to test connectivity from end to end and R1 will

serve as a DHCP server to distribute IP addresses. The diagram below details the

current setup:

Figure 8.1 :Network Topology for DHCP Configuration

PAGE: 71

1. In order to configure our router as a DHCP server the following commands were used.

R1(config)#IP dhcp pool NAME

R1(dhcp-config)#Network 192.168.3.0 255.255.255.0

R1(dhcp-config)#Default-router 192.168.3.1

The commands above create a DHCP pool, adds the network that we want to assign IP addresses

from, and specifies the default gateway for this subnet.

Note: There are many other parameters that go into configuring a DHCP server but this will

suffice for our test environment.

That should be it for the DHCP configuration.

2. The next thing that you want to do is configure the fastethernet 0/0 interface which will

connect to our switch.

R1(config)#Interface fastEthernet 0/0

R1(config-if)#No shutdown

R1(config-if)#ip address 192.168.3.1 255.255.255.0

The commands above will turn the interface on and assign an IP address.

3. Turn on the VPCS. In PC1 and PC2 type dhcp

PC1>dhcp

PC2>dhcp

4. Let’s analyze some of the traffic patterns using Wireshark.

In Wireshark we see the following information with regards to DHCP:

We see a discover message followed by an offer, request, and an acknowledgement. This is the

process that clients go through in order to obtain an IP address via DHCP. The mnemonic for the

steps above is DORA and it should help in memorizing the order of the steps.

2. Network Prefixes and Routing

 In this exercise, you study how the network prefixes (netmasks) play a role when hosts determine if a datagram can be

 directly delivered or if it must be sent to a router.

This part uses the network setup shown in Figure 8.2. The network includes one router, four

hosts and two hubs. The IP addresses of all devices are given in Table 8.1. Here, each host has only a

default route. In other words, the routing table at a host only knows about the directly connected

PAGE: 72

networks and the default gateway.

Figure 8.2: Network topology

Table 8.1

Exploring the role of prefixes at hosts

In this exercise, you explore how hosts that are connected to the same local area network, but

that have different netmasks, communicate, or fail to communicate.

a. Configure the hosts and the router to conform to the topology shown in Figure 8.2, using the

IP addresses as given in Table 9.1. Note that PC2, PC3, and PC4 have different netmasks.

b. Add Router1 as default gateway on all hosts. (PC1, PC2, PC3, and PC4).

PAGE: 73

c. Issue ping commands from PC1

a i) Clear the ARP table on all PCs.

a ii) Start Wireshark on PC1 and on PC3, and set the capture filter to capture ICMP and

b ARP packets only.

a iii) Issue a ping command from PC1 to PC3 for at least two sends (-c 2).

a iv) Save the output of the ping command at PC1 and the output of Wireshark on PC1

and PC3.

a v) Save the ARP tables, routing tables, and routing caches of each host. Please note that

b these are the tables entries from Step 3 after the ping commands are issued.

d. Issue ping commands from PC3 to PC4

a i) Clear the ARP table on all PCs.

a ii) Start Wireshark on PC3, and set the capture filter to capture ICMP and ARP packets

b only.

a iii) Check the ARP table, routing table, and routing cache of each host. Save the

output.

b Please note that these are the table entries from Step 4 before the ping is issued.

a iv) Issue a ping command from PC3 to PC4 for at least three sends (-c 3) .

a v) Save the output of the ping command and the output of Wireshark on PC3.

a vi) Save the ARP table, routing table, and routing cache of PC3. Please note that these are

b the table entries from Step 4 after the ping commands are issued.

5. Repeat Step 4, but this time issues a ping from PC3 to PC2. Note that once an entry is made in

the routing cache, you cannot repeat the previous experiment to obtain the same results. You

have to wait until the routing cache is reset or you can delete all the routing caches on all

devices.

PAGE: 74

II. In an institute, there is one DHCP server and two departments that want IP addresses for the end users. A

DHCP client could request an IP address and DHCP server must respond to client requests as the server is

always active. So, configure DHCP for the below configuration. Also, show the configuration if connecting

one more DHCP server with the current DHCP server.

PAGE: 75

LAB No: 9 Date:

Introduction to NS2: Wired Network

Objectives

• To implement simple network scenario using TCL script in NS-2.

• To interpret different agents and their applications like FTP over TCP and CBR

over UDP.

Prerequisite

• Basic idea about network topology, communication among nodes, events and

traffic

I. Introduction

The Network Simulator -2 (NS - Version 2) is an object-oriented, discrete event driven network

simulator developed at UC Berkely written in C++ and OTcl targeted at networking Research. It

implements network protocols such as TCP and UDP, traffic source behavior such as FTP, Telnet,

Web, CBR and VBR, router queue management mechanism such as Drop Tail, RED and CBQ

and it also supports for simulation of multicast protocols over wired and wireless (local and

satellite) networks. NS-2 can run under the environment of both UNIX and Windows operating

systems. The user can choose to install it partly or completely, however many supporting

components are desirable during installation for successful running of NS simulation. For

beginners it is suggested to make a complete installation that automatically installs all necessary

components at once and it requires about 320 MB disk space. With the higher degree of

familiarization and expertise the user can go for partial installation of NS2, for the faster

simulation.

A simplified user's view is depicted in Fig 10.1. NS2 is Object-oriented Tcl (OTcl) script

interpreter that has a simulation event scheduler and network component object libraries, and

network setup (plumbing) module libraries. To setup and run a simulation network, a user should

write an OTcl script that initiates an event scheduler, sets up the network topology using the

network objects and the plumbing functions in the library informing traffic sources to start and

stop transmitting packets through the event scheduler. Another major component of NS2 beside

network objects is the event scheduler. An event in NS is a packet ID that is unique for a packet

PAGE: 76

with scheduled time and the pointer to an object that handles the event. In NS, an event scheduler

keeps track of simulation time and fires all the events in the event queue scheduled for the

current time by invoking appropriate network components by an Event Scheduler which initiate

the appropriate action associated with packet pointed by the event.

Fig. 9.1 A simplified user's view

Network components communicate with one another passing packets; however this does not

consume actual simulation time. All the network components that need to spend some simulation

time handling a packet (i.e. need a delay) use the event scheduler by issuing an event for the

packet and waiting for the event to be fired to itself before doing further action handling the

packet. For example, TCP needs a timer to keep track of a packet transmission time out for

retransmission (transmission of a packet with the same TCP packet number but a different NS

packet ID). Timers use event schedulers in a similar manner that delay does. The only difference

is that timer measures a time value associated with a packet and does an appropriate action

related to that packet after a certain time goes by and does not simulate a delay.

NS is written not only in OTcl but in C++ also. For efficiency reasons, NS separates the data

path implementation from control path implementations. In order to reduce packet and event

processing time (not simulation time), the event scheduler and the basic network component

objects in the data path are written and compiled using C++. These compiled objects are made

available to the OTcl interpreter through an OTcl linkage that creates a matching OTcl object for

each of the C++ objects and makes the control functions and the configurable variables specified

by the C++ object act as member functions and member variables of the corresponding OTcl

object. Fig. 9.2 shows an object hierarchy example in C++ and OTcl. One thing to note in the

PAGE: 77

figure is that for C++ objects that have an OTcl linkage forming a hierarchy, there is a matching

OTcl object hierarchy very similar to that of C++.

Fig. 9.2 C++ and OTcl: The Duality

The reason why NS2 uses two languages is that different tasks have different requirements: For

example, simulation of protocols requires efficient manipulation of bytes and packet headers

making the run-time speed very important. On the other hand, in network studies where the aim

is to vary some parameters and to quickly examine a number of scenarios the time to change the

model and run it again is more important. C++ is used for detailed protocol implementation and

in cases where every packet of a flow has to be processed. Otcl, on the other hand, is suitable for

configuration and setup. Otcl runs quite slowly, but it can be changed very quickly making the

construction of simulations easier.

9.2 Starting NS

To start with ns type the command 'ns <tclscript>' (assuming that you are in the directory with

the ns executable, or that your path points to that directory), where '<tclscript>' is the name of a

Tcl script file which defines the simulation scenario (i.e. the topology and the events).

Everything else depends on the Tcl script. The script might create some output on stdout, it might

write a trace file or it might start nam to visualize the simulation. Or all of the above.

PAGE: 78

set ns [new Simulator]

Starting nam

You can either start nam with the command 'nam <nam-file>' where '<nam-file>' is the name of a

nam trace file that was generated by ns, or you can execute it directly out of the Tcl simulation

script for the simulation which you want to visualize. Following Fig. 9.3 shows a screenshot of

nam window where the most important functions are being explained.

Fig. 9.3 Screenshot of sample nam window

9.3 Writing a simple Tcl script

We can write Tcl scripts in any text editor. Let the first example name be 'example1.tcl'.

First step is to create a simulator object. This is done with the command

PAGE: 79

set nf [open out.nam w]

$ns namtrace-all $nf

proc finish {} {

global ns nf

$ns flush-trace

close $nf

exec nam out.nam &

exit 0

}

$ns at 5.0 "finish"

$ns run

Next step is to open a file for writing that is going to be used for the nam trace data.

The first line opens the file 'out.nam' for writing and gives it the file handle 'nf'. In the second

line we tell the simulator object that we created above to write all simulation data that is going to

be relevant for nam into this file.

The next step is to add a 'finish' procedure that closes the trace file and starts nam.

The next line tells the simulator object to execute the 'finish' procedure after 5.0 seconds of simulation

time.

The last line finally starts the simulation.

PAGE: 80

set n0 [$ns node]

set n1 [$ns node]

$ns duplex-link $n0 $n1 1Mb 10ms DropTail

We can actually save the file now and try to run it with 'ns example1.tcl'. We are going to get an

error message like 'nam: empty trace file out.nam' though, because until now we haven't defined

any objects (nodes, links, etc.) or events.

Two nodes, one link

In this section we are going to define a very simple topology with two nodes that are connected

by a link. The following two lines define the two nodes. (Note: You have to insert the code in this

section before the line '$ns run', or even better, before the line '$ns at 5.0 "finish"').

A new node object is created with the command '$ns node'. The above code creates two nodes

and assigns them to the handles 'n0' and 'n1'.

The next line connects the two nodes.

This line tells the simulator object to connect the nodes n0 and n1 with a duplex link with the

bandwidth 1Megabit, a propagation delay of 10ms and a DropTail queue.

Now we can save the file and start the script with 'ns example1.tcl'. nam will be started

automatically and we would see an output that resembles the Fig. 9.4 below.

PAGE: 81

set cbr0 [new Agent/CBR]

$ns attach-agent $n0 $cbr0

$cbr0 set packetSize_ 500

$cbr0 set interval_ 0.005

set null0 [new Agent/Null]

$ns attach-agent $n1 $null0

Fig. 9.4 Sample nam window having 2 nodes

9.4 Sending data

Of course, this example isn't very satisfying yet, since you can only look at the topology, but nothing

happens, so the next step is to send some data from node n0 to node n1. In ns, data is always being sent

from one 'agent' to another. So the next step is to create an agent object that sends data from node n0,

and another agent object that receives the data on node n1.

Here first two lines create a CBR agent and attach it to the node n0. CBR stands for 'constant bit rate'.

The third and the fourth line should be self-explaining. The packetSize is being set to 500 bytes and a

packet will be sent every 0.005 seconds (i.e. 200 packets per second). Like this we can also find other

relevant parameters for each agent type. The next lines create a Null agent which acts as traffic sink and

attach it to node n1.

PAGE: 82

$ns connect $cbr0 $null0

$ns at 0.5 "$cbr0 start"

$ns at 4.5 "$cbr0 stop"

Now the two agents have to be connected with each other.

And now we have to tell the CBR agent when to send data and when to stop sending. Note: It's probably

best to put the following lines just before the line '$ns at 5.0 "finish"'.

This code should be self-explaining again.

Now we can save the file and start the simulation again. When we click on the 'play' button in the

nam window, we will see that after 0.5 simulation seconds, node 0 starts sending data packets to

node 1 as shown in Fig. 9.5.

Fig. 9.5 Transmission of data packets from node 0 to node 1

Now we can start some experiments with nam and the Tcl script. Click on any packet in the nam

window to monitor it, and you can also click directly on the link to get some graphs with

statistics. Also observe the changes by making changes in 'packetsize_' and 'interval_' parameters

in the Tcl script and see what happens.

PAGE: 83

set n0 [$ns node]

set n1 [$ns node]

set n2 [$ns node]

set n3 [$ns node]

$ns duplex-link $n0 $n2 1Mb 10ms DropTail

$ns duplex-link $n1 $n2 1Mb 10ms DropTail

$ns duplex-link $n3 $n2 1Mb 10ms DropTail

$ns duplex-link-op $n0 $n2 orient right-down

$ns duplex-link-op $n1 $n2 orient right-up

$ns duplex-link-op $n2 $n3 orient right

9.5 Defining topology

Now insert the following lines into the code to create four nodes.

The following piece of Tcl code creates three duplex links between the nodes.

Add the next three lines to your Tcl script and start it again.

We will probably understand what this code does when you look at the topology in the nam

window now. It should look like the Fig. 9.6.

PAGE: 84

set cbr0 [new Agent/CBR]

$ns attach-agent $n0 $cbr0

$cbr0 set packetSize_ 500

$cbr0 set interval_ 0.005

set cbr1 [new Agent/CBR]

$ns attach-agent $n1 $cbr1

$cbr1 set packetSize_ 500

$cbr1 set interval_ 0.005

Fig. 9.6 Network topology with 4 nodes in a predefined layout

Note that the autolayout related parts of nam are gone, since now we have taken the layout into

our own hands. The options for the orientation of a link are right, left, up, down and

combinations of these orientations.

9.6. The Events

Now we create two CBR agents as traffic sources and attach them to the nodes n0 and n1. Then

we create a Null agent and attach it to node n3.

PAGE: 85

$ns connect $cbr0 $null0

$ns connect $cbr1 $null0

$ns at 0.5 "$cbr0 start"

$ns at 1.0 "$cbr1 start"

$ns at 4.0 "$cbr1 stop"

$ns at 4.5 "$cbr0 stop"

The two CBR agents have to be connected to the Null agent.

We want the first CBR agent to start sending at 0.5 seconds and to stop at 4.5 seconds while the

second CBR agent starts at 1.0 seconds and stops at 4.0 seconds.

When the above script is executed, we can will notice that there is more traffic on the links from

n0 to n2 and n1 to n2 than the link from n2 to n3 can carry. A simple calculation confirms this:

We are sending 200 packets per second on each of the first two links and the packet size is 500

bytes. This results in a bandwidth of 0.8 megabits per second for the links from n0 to n2 and

from n1 to n2. That's a total bandwidth of 1.6Mb/s, but the link between n2 and n3 only has a

capacity of 1Mb/s, so obviously some packets are being discarded. But which ones? Both flows

are black, so the only way to find out what is happening to the packets is to monitor them in nam

by clicking on them.

9.7 Marking flows

Add the following two lines to above CBR agent definitions.

set null0 [new Agent/Null]

$ns attach-agent $n3 $null0

PAGE: 86

$ns color 1 Blue

$ns color 2 Red

$ns duplex-link-op $n2 $n3 queuePos 0.5

The parameter 'fid_' stands for 'flow id'.

Now add the following piece of code to your Tcl script, preferably at the beginning after the

simulator object has been created, since this is a part of the simulator setup.

This code allows us to set different colors for each flow id as shown in Fig. 9.7.

Fig. 9.7 Network topology with 4 nodes with packet flow

Now you can start the script again and one flow should be blue, while the other one is red. Watch

the link from node n2 to n3 for a while, and we would notice that after some time the distribution

between blue and red packets isn't too fair anymore

9.8 Monitoring a queue

Add the following line to your code to monitor the queue for the link from n2 to n3.

$cbr0 set fid_ 1

$cbr1 set fid_ 2

PAGE: 87

$ns duplex-link $n3 $n2 1Mb 10ms SFQ

Start ns again and we will see a picture similar to the one shown in Fig. 9.8 after a few

moments.

Fig. 9.8 Network topology with 4 nodes with packet queue

We can see the packets in the queue now, and after a while we can even see how the packets are

being dropped. But you can't really expect too much 'fairness' from a simple DropTail queue. So

let's try to improve the queueing by using a SFQ (stochastic fair queueing) queue for the link

from n2 to n3. Change the link definition for the link between n2 and n3 to the following line.

The queueing should be 'fair' now. The same amount of blue and red packets should be dropped

as shown in Fig. 9.9.

PAGE: 88

Fig. 9.9 Network topology with 4 nodes with packet drop

Steps to create and execute Tcl script

1. Open a text editor and write the codes there and save it with .tcl file extension

gedit filename.tcl

2. To execute the file, open terminal and navigate to the folder where the saved file is present and

run:

ns filename

3. Step 2 automatically creates the .nam and .tr files in the same folder. Optionally, to execute the

nam file following command can be used in the terminal:

nam filename.nam

10.7 The algorithm for writing a complete Tcl script

Begin:

1. Create instance of network simulator object

2. Turn on Tracing and NAM

3. Define a 'Finish' procedure – Here the instruction to open NAM has to be

included

4. Create network

PAGE: 89

i. Create nodes

ii. Assign node position (NAM)

iii. Create link between nodes (Simplex/Duplex)

iv. Define colors for data flow (NAM)

v. Set the Queue size for node (Optional)

vi. Monitor the queue (NAM)

vii. Attach agent for every node - Transport Connection (TCP/UDP)

viii. Set up Traffic Application (FTP/CBR)

5. Schedule the events

6. Call finish procedure

7. Print the necessary output data

8. Run the Simulation

9. Visualize using NAM or analyze the trace file

End

II. SOLVED EXERCISE

Sample Tcl script:

Step 1. define global simulator object

set ns [new Simulator]

Step 2. Define different colors for data flows (for NAM)

$ns color 1 green

$ns color 2 Red

Step 3. Opening the NAM trace file

set nt [open simulate.nam w]

$ns namtrace-all $nt

Step 4. Opening the Trace file

set tr [open simulate.tr w]

$sn trace-all $tr

PAGE: 90

Step 5. Define a 'finish' procedure

proc finish {} {

global ns nt tr

$ns flush-trace

#Close the NAM trace file

close $nt

close $tr

exec nam simulate.nam &

exit 0
}

Step 6. Creation of six nodes

set n0 [$ns node]

set n1 [$ns node]

set n2 [$ns node]

set n3 [$ns node]

set n4 [$ns node]

set n5 [$ns node]

Step 7. Creating links between the nodes

$sn duplex-link $n0 $n2 2Mb 10ms DropTail

$sn duplex-link $n1 $n2 2Mb 10ms DropTail

$sn duplex-link $n2 $n3 1.7Mb 20ms DropTail

$sn duplex-link $n3 $n4 2Mb 10ms DropTail

$sn duplex-link $n3 $n5 2Mb 10ms DropTail

Step8. Setting Queue Size of link (n2-n3) to 10

$sn queue-limit $n2 $n3 10

#Step9. Provide node positions to visualize in NAM window

$ns duplex-link-op $n0 $n2 orient right-down

$ns duplex-link-op $n1 $n2 orient right-up

$ns duplex-link-op $n2 $n3 orient right

$ns duplex-link-op $n3 $n4 orient right-up

$ns duplex-link-op $n4 $n5 orient right-down

#Step 10. Monitoring the queue for link (n2-n3) (n3-n4). (for NAM)

$sn duplex-link-op $n2 $n3 queuePos 0.5

#Step 11 Setting up a TCP connection

set tcp [new Agent/TCP]

$tcp set class_ 1

$ns attach-agent $na $tcp

#Step 12 If we setup tcp traffic source then connect it with tcp sink

set sink [new Agent/TCPSink]

$ns attach-agent $ne $sink

$ns connect $tcp $sink

$tcp set fid_ 2

#Step 13 Setting up a FTP over TCP connection

set ftp [new Application/FTP]

PAGE: 91

$ftp attach-agent $tcp

$ftp set type_ FTP

#Step 14 Setup a UDP connection

set udp [new Agent/UDP]

$sn attach-agent $nb $udp

#Step 15 If we setup udp traffic source then connect it with null

set null [new Agent/Null]

$ns attach-agent $nf $null

$ns connect $udp $null

$udp set fid_ 1

#Step 16 Setting up a CBR over UDP connection

set cbr [new Application/Traffic/CBR]

$cbr attach-agent $udp

$cbr set type_ CBR

$cbr set packet_size_ 1000

$cbr set rate_ 1mb

$cbr set random_ false

#Step 17 Scheduling events for the CBR and FTP agents

$sn at 0.1 "$cbr start"

$sn at 1.0 "$ftp start"

$sn at 4.0 "$ftp stop"

$sn at 4.5 "$cbr stop"

$ns at 5.0 "finish"

#Step 18 Run the simulation

$ns run

OUTPUT:

(i) Nam file

Fig. 9.10 Nam output

PAGE: 92

(ii) Trace file:

III. LAB EXERCISES

Fig. 9.11 Trace file

1. Set up a simple wired network with two nodes n0 and n1 for UDP_CBR traffic. Provide

duplex link between these nodes having propagation delay of 10msec and capacity of 10Mb by

considering n0 as source node and n1 as sink node.

2. Set up a simple wired network with two nodes n0 and n1 for TCP_FTP traffic. Provide duplex

link between these nodes having propagation delay of 10msec and capacity of 10Mb by

considering n0 as source node and n1 as sink node.

3. Set up the LAN network with 4 nodes, duplex-link node N1 to node N2 is 2Mb capacity and

20ms delay, duplex-link node N3 to node N4 is 1Mb capacity and 10ms delay. N1(source) and

N2(sink), N3(source) and N4(sink). Change the color of the flow between the nodes. The

duration of the simulation is 5 seconds.

PAGE: 93

IV. LAB EXERCISE

1. Consider a network with seven nodes n0, n1, n2, n3, n4, n5 and n6 forming a circular

topology. n0 is a TCP source, which transmits packets to node n6 (a TCP sink) through the

node n5. Node n1 is another traffic source and sends UDP packets to node n3 through n2.

The duration of the simulation time is 10 seconds. Write a TCL script to simulate this

scenario.

PAGE: 94

LAB No 10 Date:

Measuring Performance of Protocols with NS2

Objectives:

• To understand the performance of protocols on the Network

I. LAB EXERCISE

1. Metric Mahadeva wants to understand the performance of protocols on networks. Since this is

his first foray in this area, he decides to keep the topology and protocol simple. His smart

friend Raju Topiwala gave him the following topology to use and suggested that he use UDP

since it's much simpler than TCP. UDP just adds sequence numbers to packets and pretty much

does nothing more (as far as this experiment is concerned).

There is a source node, a destination node, and an intermediate router (marked "S", "D", and "R"

respectively). The link between nodes S and R (Link-1) has a bandwidth of 1Mbps and 50ms

latency. The link between nodes R and D (Link-2) has a bandwidth of 100kbps and 5ms latency.

Mahadeva wants to understand the following:

• If the source data rate (rate at which source injects data into the network) varies, what happens

to the packets in the network?

• At what point does it get congested?

• How do the throughput and loss vary as a function of the source data rate.

Help him to write a ns2 tcl script (name it ns-udp.tcl) that helps him conduct

this experiment. Help him also interpret the results of the experiment.

Guidance:

1. Vary the source data rate (termed Offered Load hence forth) to take on values of 40kbps, 80

kbps, 120kbps and 160kbps. Note each value will result in one run. Thus you have 4 runs and

hence 4 trace files. Ensure proper naming of the trace files (Eg: udp-40k.tr, udp-80k.tr, udp-

120k.tr and udp-160k.tr). Include a tcl file of one of the runs as ns-udp.tcl in the directory.

2. Routers have limited buffer space and drop packets during congestion. Use the “queue-limit”

command to model this. Limit the queue at the bottleneck link (link-2) between node "R" and

node "D" to 10 packets. It is fun to monitor the queue at Link-2 (between R and D). You can do
so using the duplex-link-op command.

3. Let each experiment run for at least 10sec.

4. Metrics: For each run, calculate/measure the following metrics by processing the output trace

file.

a) Offered Load: The rate at which source traffic is being injected into the network. (You set this

value in the tcl script but confirm via trace that you got it correct.)

PAGE: 95

b) Packet Loss: The number of packets that were sent by the sender, but didn't reach the

destination. Express it in percentage.

c) Throughput: The rate at which bits are being received at the destination. Eg: If 100 packets of

size 100 bytes were received in a duration of 100 seconds, we say the throughput is 100 * 100

*8/100 = 800bps or 0.8kbps. Express it in kbps.

LAB REPORT

Plot the following graphs. Ensure the axis is properly labelled, with proper legend and correct

units.

1. Offered Load vs percentage packet loss

2. Offered load vs throughput

In the report, comment on what you observe in each graph and the reasons for the same.

II. LAB QUESTION

This does involve bash scripting or using C code. This is a continuation of the previous exercise.

If the source data rate (the rate at which the source injects data into the network) varies, how

does the delay vary as a function of the source data rate? That is plot the Offered Load vs

Average end-to-end delay.

Average end-to-end delay for a run: If t1 is the time the packet was generated at the source and t2

was the time the packet was received at the destination. Delay of a packet is t2-t1. Calculate the

average of these values for packets that reached the destination. Express it in ms. Then plot the

Offered Load vs Average end-to-end delay for the different runs.

PAGE: 96

LAB No 11 Date:

Design of VLANs Using GNS3

Objectives:

• To understand Virtual Lan (VLAN) Concepts

We can solve many of the problems associated with layer 2 switching with VLANs. VLANs

work like this: Figure 11.1 shows all hosts in this very small company connected to one switch,

meaning all hosts will receive all frames, which is the default behavior of all switches.

Fig 11.1 One switch, one LAN: Before VLANs, there were no separations between hosts.

If we want to separate the host’s data, we could either buy another switch or create virtual

LANs, as shown in Figure 11.2

Fig 11.2 One switch, two virtual LANs (logical separation between hosts): Still physically one

switch, but this switch acts as many separate devices.

In Figure 11.2 , we configured the switch to be two separate LANs, two subnets, two

broadcast domains, two VLANs—they all mean the same thing—without buying another switch.

We can do this 1,000 times on most Cisco switches, which saves thousands of Rupees and more!

PAGE: 97

There are two different types of ports in a switched environment. Let’s take a look at the

first type in Figure 11.3

Fig 11.3 Access Ports

Notice there are access ports for each host and an access port between switches—one for each

VLAN.

Access ports

An access port belongs to and carries the traffic of only one VLAN. Traffic is both

received and sent in native formats with no VLAN information (tagging) whatsoever. Anything

arriving on an access port is simply assumed to belong to the VLAN assigned to the port.

Because an access port doesn’t look at the source address, tagged traffic—a frame with added

VLAN information—can be correctly forwarded and received only on trunk ports.

added VLAN information—can be correctly forwarded and received only on trunk ports.

With an access link, this can be referred to as the configured VLAN of the port. Any

device attached to an access link is unaware of a VLAN membership—the device just assumes

it’s part of some broadcast domain. But it doesn’t have the big picture, so it doesn’t understand

the physical network topology at all.

Another good bit of information to know is that switches remove any VLAN information from

the frame before it’s forwarded out to an access-link device. Remember that access-link devices

can’t communicate with devices outside their VLAN unless the packet is routed. Also, you can

only create a switch port to be either an access port or a trunk port—not both. So you’ve got to

choose one or the other and know that if you make it an access port, that port can be assigned to

one VLAN only. In Figure 12.3, only the hosts in the Sales VLAN can talk to other hosts in the

same VLAN. This is the same with Admin VLAN, and they can both communicate to hosts on

the other switch because of an access link for each VLAN configured between switches.

Trunk ports

PAGE: 98

The term trunk port was inspired by the telephone system trunks, which carry multiple

telephone conversations at a time. So it follows that trunk ports can similarly carry multiple

VLANs at a time as well.

A trunk link is a 100, 1,000, or 10,000 Mbps point-to-point link between two switches,

between a switch and router, or even between a switch and server, and it carries the traffic of

multiple VLANs—from 1 to 4,094 VLANs at a time. But the amount is really only up to 1,001

unless you’re going with something called extended VLANs.

Instead of an access link for each VLAN between switches, we’ll create a trunk link

demonstrated in Figure 11.4. Trunking can be a real advantage because with it, you get to make a

single port part of a whole bunch of different VLANs at the same time. This is a great feature

because you can set ports up to have a server in two separate broadcast domains simultaneously,

so your users won’t have to cross a layer 3 device (router) to log in and access it.

Another benefit to trunking comes into play when you’re connecting switches. Trunk

links can carry the frames of various VLANs across them, but by default, if the links between

your switches aren’t trunked, only information from the configured access VLAN will be

switched across that link.

It’s also good to know that all VLANs send information on a trunked link unless you clear each

VLAN by hand.

Fig 11.4 VLANs can span across multiple switches by using trunk links, which carry traffic

for multiple VLANs.

Frame Tagging

As you now know, you can set up your VLANs to span more than one connected switch.

You can see that going on in Figure 11.4, which depicts hosts from two VLANs spread across

two switches. This flexible, power-packed capability is probably the main advantage to

implementing VLANs, and we can do this with up to a thousand VLANs and thousands upon

thousands of hosts!

PAGE: 99

All this can get kind of complicated—even for a switch—so there needs to be a way for

each one to keep track of all the users and frames as they travel the switch fabric. And this just

happens to be where frame tagging enters the scene.

This frame identification method uniquely assigns a user defined VLAN ID to each

frame.

Here’s how it works: Once within the switch fabric, each switch that the frame reaches must first

identify the VLAN ID from the frame tag. It then finds out what to do with the frame by looking

at the information in what’s known as the filter table. If the frame reaches a switch that has

another trunked link, the frame will be forwarded out of the trunk-link port.

Once the frame reaches an exit that’s determined by the forward/filter table to be an access link

matching the frame’s VLAN ID, the switch will remove the VLAN identifier. This is so the

destination device can receive the frames without being required to understand their VLAN

identification information.

Another great thing about trunk ports is that they’ll support tagged and untagged traffic.

simultaneously if you’re using 802.1q trunking. The trunk port is assigned a default port VLAN

ID (PVID) for a VLAN upon which all untagged traffic will travel. This VLAN is also called the

native VLAN and is always VLAN 1 by default, but it can be changed to any VLAN number.

Similarly, any untagged or tagged traffic with a NULL (unassigned) VLAN ID is assumed to

belong to the VLAN with the port default PVID. Again, this would be VLAN 1 by default. A

packet with a VLAN ID equal to the outgoing port native VLAN is sent untagged and can

communicate to only hosts or devices in that same VLAN. All other VLAN traffic has to be sent

with a VLAN tag to communicate within a particular VLAN that corresponds with that tag.

VLAN Identification Methods:

1. Inter-Switch Link (ISL)

Inter-Switch Link (ISL) is a way of explicitly tagging VLAN information onto an

Ethernet.

frame. This tagging information allows VLANs to be multiplexed over a trunk link through an

external encapsulation method. This allows the switch to identify the VLAN membership of a

frame received over the trunked link.

2. IEEE 802.1q

Created by the IEEE as a standard method of frame tagging, IEEE 802.1q actually inserts

a field into the frame to identify the VLAN. If you’re trunking between a Cisco switched link

and a different brand of switch, you’ve got to use 802.1q for the trunk to work.

Unlike ISL, which encapsulates the frame with control information, 802.1q inserts an

802.1q field along with tag control information.

PAGE: 100

LAB EXERCISE

Configure following inter-VLAN example in GNS3 and verify the working using Wireshark tool.

1.

2.

PAGE: 101

LAB No 12 Date:

Study of Dynamic Routing Protocols using GNS3

Objectives:

• To study the routing information protocol.

• To study the open shortest path first.

1. Routing Information Protocol - RIP:

Routing Information Protocol (RIP) is a dynamic routing protocol which uses hop count as a

routing metric to find the best path between the source and the destination network. It is a

distance vector routing protocol.

Hop Count: Hop count is the number of routers occurring in between the source and destination

network. The path with the lowest hop count is considered as the best route to reach a network

and therefore placed in the routing table. RIP prevents routing loops by limiting the number of

hopes allowed in a path from source and destination. The maximum hop count allowed for RIP is

15 and hop count of 16 is considered as network unreachable.

Features of RIP:

1. Updates of the network are exchanged periodically.

2. Updates (routing information) are always broadcast.

3. Full routing tables are sent in updates.

4. Routers always trust routing information received from neighbor routers. This is also

known as Routing on rumors.

RIP versions:

There are three versions of routing information protocol – RIP Version1, RIP Version2 and

RIPng. RIP v1 is known as Classful Routing Protocol because it doesn’t send information of

subnet mask in its routing update.

RIP v2 is known as Classless Routing Protocol because it sends information of subnet mask in

its routing update.

RIPng (RIP next generation) is an extension of RIPv2 for support of IPv6, the next generation

Internet Protocol.

PAGE: 102

The RIPv2 routing protocol uses the following command syntax:

Router(config)#router rip

Router(config-router)#version 2

Router(config-router)#network <network-IP>

Router(config-router)#network <network-IP>

LAB EXERCISE:

Configure the below topology to setup connectivity using RIPv2. R1, R2, and R3 will use

dynamic routing protocol (RIPv2).

Configuration for R1

R1#conf t

R1(config)#int s1/0

R1(config-if)#ip add 100.1.1.2 255.255.255.0

R1(config-if)#no shut

R1(config-if)#int s1/1

R1(config-if)#ip address 20.1.1.1 255.255.255.0

PAGE: 103

R1(config-if)#no shut

R1(config-if)#exit

R1(config)#router rip

R1(config-router)#version 2

R1(config-router)#network 20.1.1.0

R1(config-router)#network 100.1.1.0

Configuration for R2

R2#config t

R2(config)#int f1/0

R2(config-if)#ip address 172.16.2.1 255.255.0.0

R2(config-if)#no shut

R2(config-if)#int s2/0

R2(config-if)#ip address 100.1.1.1 255.255.255.0

R2(config-if)#no shut

R2(config-if)#exit

R2(config)#router rip

R2(config-router)#version 2

R2(config-router)#network 172.16.0.0

R2(config-router)#network 100.1.1.0

Configuration for R3

R3#config t

R3(config)#int s2/0

R3(config-if)#ip add 20.1.1.2 255.255.255.0

R3(config-if)#no shut

R3(config-if)#int f1/0

R3(config-if)#ip add 10.2.2.1 255.255.255.0

R3(config-if)#no shut

PAGE: 104

R3(config-if)#exit

R3(config)#router rip

R3(config-router)#ver 2

R3(config-router)#network 10.2.2.0

R3(config-router)#network 20.1.1.0

RIP Verification:

show ip route command should display all RIP networks and end to end ping should be

successful.

show ip protocol command should display if necessary, ports are active.

show ip rip database command should displays the contents of RIP database inside the router.

debug ip rip command shows RIP updates occurring in the system undebug all Once you turn on

debug ip rip router will keep showing RIP updates. The command undebug all will stop such RIP

updates.

show running-config command is used to get the current configuration from the Router.

2. Open Shortest Path First - OSPF:

BASIC OSPF - Enable OSPF

Open Shortest Path First (OSPF) is an IGP developed by the OSPF working group of the Internet

Engineering Task Force (IETF). Designed expressly for IP networks, OSPF supports IP

subnettingand tagging of externally derived routing information. OSPF also allows packet

authentication and uses IP multicast when sending/receiving packets.

As with other routing protocols, enabling OSPF requires that you create an OSPF routing

process, specify the range of IP addresses to be associated with the routing process, and assign

area IDs to be associated with that range of IP addresses.

Configuration

With OSPF, every router has its own unique "picture" (topology map) of the network. Routers

use "HELLO" packets to periodically check with routers to ensure they are still there. Every

router in OSPF is identified with a "router ID". The router ID can be manually entered or OSPF

will automatically choose the IP address with the highest number. It supports variable length

subnet masks (VLSM), making it a classless routing protocol.

PAGE: 105

OSPF works well in point to point and point to multipoint, broadcast or non-broadcast

configurations. OSPF also offers a number of OSPF-specific features such as stub areas, virtual

links, and OSPF on demand circuits. In OSPF route redistribution is supported between different

routing protocols.

An OSPF point-to-multipoint interface is defined as a numbered point-to-point interface having

one or more neighbors. It creates multiple host routes. An OSPF point-to-multipoint network has

the following benefits compared to no broadcast multiaccess and point-to-point networks.

The OSPF routing protocol uses the following command syntax:

Router(config)#router ospf <process id 1-65535>

Router(config-router)network <network address> <wild card mask> area <0-

4294967295>

Area id number can always be zero (0) for small networks, but for larger networks, the area IDs

need to be properly planned as all routing updates must traverse area 0.

LAB EXERCISE:

Configure the below topology to setup connectivity using RIPv2. R1, R2, and R3 will use

dynamic routing protocol (OSPF).

PAGE: 106

Configuration for R1

R1(config)#router ospf 200

R1(config-router)#network 10.0.0.0 0.255.255.255 area 0

R1(config-router)#network 192.168.1.0 0.0.0.255 area 0.0.0.0

R1(config-router)#exit

Configuration for R2

R2(config)#router ospf 200

R2(config-router)#network 20.0.0.0 0.255.255.255 area 0

R2(config-router)#network 192.168.1.0 0.0.0.255 area 0

R2(config-router)#network 150.150.150.0 0.0.0.255 area 1

R2(config-router)#exit

R2(config)#exit

Configuration for R3

R3(config)#router ospf 200

R3(config-router)#network 150.150.150.0 0.0.0.255 area 1

R3(config-router)#exit

R3(config)#exit

OSPF Verification:

show ip route

show ip ospf neighbor

show ip ospf database

PAGE: 107

II. Configure the below network topology using RIP and OSPF as shown in Figure and check the

connectivity by pinging from PC1 to PC2, PC3, PC4.

PAGE: 108

PAGE: 109

APPENDIX-I

Suggested Mini Project Topics:

1. Since lot of progress has been made in the field of video technology, video communication is gradually

changes from point-to-point to multipoint-to-multipoint or from normal image quality to high-definition image

quality. Design a project based on the basic concept of socket programming which is used to establish a

connection between client and server during a video call.

a) The video must be streamed from one-client device to another server device and vice-versa.

b) The main goal of the project is to use the socket structure of a UDP datagram to connect the host and client for

an efficient video-calling system.

Description about project:

Here you must create a client-server model where server create sockets on startup and clients are connected with

servers. A client should know the server IP & port.

For Video Data Transmission project:

At Server Side:

a) Acquire video frames of webcam using OpenCV or Python.

b) With pickle (process where a object hierarchy is converted into a byte stream) serialize frame to byte data.

c) Pack (used to fill the entire frame) each frame data using certain module(struct).

d) Send data to client and display frame

At Client Side:

a) Receive frames and append them to data

b) Unpack the data using struct module

c) Load the frame using pickle

d) Display the frame at Client side

2. Implement the project on network statistics such as Throughput, Average RTT, Transmission Speed. So,

measure the throughput and RTT for a TCP client and server program. Also, find the RTT through ping

command.

Description about project:

In this project, a tcp client-server program must be designed where first a connection is established from client to

server. The server then sends a segment (in bytes) to the server. The sending time and RTT are calculated based

on sending information.

On the server side, two structure variables (using struct) t1 and t2 must be declared. Calculate the time elapsed

for both variables i.e., t1 and t2 in seconds.

On the client side, structure variables (using struct) t1 and t2 calculate the receiving time of data coming from

the server.

With the help of client-side and server-side implementation, calculate the throughput and RTT time.

PAGE: 110

3. Write and implement the project on the application that read the packet that travels across various layers of the

Transmission Control Protocol/Internet Protocol (TCP/IP) model of network architecture. The packet sniffer will

analyze the network traffic that allows users to get a practical understanding of the flow of packets in a network.

You can use various Application layer protocols such as HTTP, DNS, Transport Layer: TCP, UDP and Network

Layer: IPv4.

Description about project:

• In the first step, you have to create a function for opening of socket and listen for the packets in the process.

• Information about the packets is passed on to a function that processes the ethernet protocol.

• Strip the header based on data fields, pass it to higher-level protocol (IPv4, ARP etc.). After that

processed TCP, UDP protocols.

• Parse DNS, HTTP, SMTP protocols for further packet transmission.

• Analyzing the results using packet sniffer and read/check the illegal access and read

encrypted/Unencrypted data.

4. Design a Tool for capturing the traffic based on the TCP header flags (ACK, SYN, FIN, RST, PSH, URG).

Use Wireshark for simulation purposes to capture and analyze packets based on the TCP header flags.

Description of project:

The actual process for establishing a connection with the TCP protocol is as follows:

1. First, the requesting client sends the server an SYN packet or segment (SYN stands for synchronize) with a

unique, random number. This number ensures full transmission in the correct order (without duplicates).

2. If the server has received the segment, it agrees to the connection by returning a SYN-ACK packet (ACK

stands for acknowledgment) including the client's sequence number plus 1. It also transmits its own sequence

number to the client.

3. Finally, the client acknowledges the receipt of the SYN-ACK segment by sending its own ACK packet,

which in this case contains the server's sequence number plus 1. At the same time, the client can already

begin transferring data to the server.

https://www.ionos.com/digitalguide/fileadmin/DigitalGuide/Schaubilder/EN-tcp.png

PAGE: 111

Both sides of a connection can terminate a TCP connection, and even one-sided termination is also possible. This

is also known as a half-open connection, whereby the other side is still allowed to transfer data even if one side

has already disconnected.

The individual steps of two-way termination (initiated by the client for the sake of simplicity in this example) can

be summarized as follows:

1. The client sends a FIN segment to notify the server that it no longer wants to send data. It sends its own

sequence number, just as it does when the connection is established.

2. The server acknowledges receipt of the package with an ACK segment that contains the sequence number

plus 1.

3. When the server has finished the data transfer, it also sends a FIN packet, to which it adds its sequence

number.

4. Now it is the client's turn to send an ACK packet including the sequence number plus 1, which officially

terminates the TCP connection for the server.

https://www.ionos.com/digitalguide/fileadmin/DigitalGuide/Schaubilder/EN-tcp-verbindungsabbau.png

PAGE: 112

APPENDIX-II

 Fig 1: TCP Segment Format

 Fig 2: UDP Header and Pseudoheader

 Fig 3: Format of DNS message

PAGE: 113

References:

1. W. Richard Stevens,” UNIX Network Programming, Volume 1: The Sockets Networking

API”, Third Edition,Addison-Wesley Professional Computing, 2003.

2. Introduction and Reference Guide to Wireshark,

https://thepracticalsysadmin.com/wireshark-reference-guide.

3. Marc Greis tutorial for NS2, www.isi.edu/nsnam/ns/tutorial/, 2004.

4. Teerawat Issariyakul and Ekram Hossain. Introduction to Network Simulator NS2: Second

Edition, Springer, 2011.

5. Jason C. Nuemann, “The Book of GN3”, No Starch Press,2015.

6. GNS3 Documentation, https://www.gns3.com.

https://thepracticalsysadmin.com/wireshark-reference-guide
http://www.isi.edu/nsnam/ns/tutorial/
http://www.gns3.com/

