

CSE_2161

DATA STRUCTURES - LAB

MANUAL

SECOND YEAR

 (Effective from 2022 batch)

 DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

MANIPAL INSTITUTE OF TECHNOLOGY

Bengaluru,

 MAHE, MANIPAL

KARNATAKA - 560064

i

CONTENTS

LAB

NO.

TITLE
PAGE

NO.

REMARKS

(I)
COURSE OBJECTIVES AND OUTCOMES i

(II)
EVALUATION PLAN i

(III)
INSTRUCTIONS TO THE STUDENTS ii-iii

(IV)
SAMPLE LAB OBSERVATION NOTE

PREPARATION

iv-v

1. To implement a C program to sort the given names using array

of pointers.
4-6

2. (a) To use various memory allocation functions present in C:

(i) malloc() (ii) calloc() (iii) realloc() (iv) Free()

(b) Write a program to read an integer number and print the

reverse of that number using recursion

7-9

3. Write a program in C to implement stack (its operations) by

using arrays.
10-12

4. Write a program in C to implement Queue (its operations) by

using arrays.
13-15

5. Write a program in C to implement Circular Queue using

arrays.
16-17

6. Write a program that uses functions to perform the following

operations on singly linked list: i) Creation ii) Insertion iii)

Deletion iv) Traversal

18-21

7. Write a program that uses functions to perform the following

operations on doubly linked list: i) Creation ii) Insertion iii)

Deletion iv) Traversal

22-23

8. Write a program that uses functions to perform the following

operations on circular linked list: i) Creation ii) Insertion iii)

Deletion iv) Traversal

 24-26

9. Write a C program to implement the operations on stack and

queue using Linked List.
27-28

10. Write a program to perform the following operations:

 a) Insert an element into a binary search tree.

 b) Delete an element from a binary search tree.

 c) Search for a key element in a binary search tree.

29-31

ii

11. Write a program to implement the tree traversal methods.
32-34

12. Write a C program to find the minimum and maximum

element in BST.
35-35

 LAB EXAMS

 REFERENCES

COURSE OBJECTIVES AND OUTCOMES

Course objectives:

This course will enable students to

• To get practical experience in design, develop, implement and analyze linear data

structures.

• To get practical experience in design, develop, implement and analyze nonlinear data

structures.

Course outcomes:

After studying this course, students will be able to:

1. Apply recursion concepts to problems with arrays, functions, structures and pointers.
2. Implement applications using stacks and queues.

3. Solve problems using linked lists and trees.

Evaluation plan

 Internal Assessment Marks: 60%

✓ Students must work out the C programs in code blocks only.

✓ Students shall submit the lab code along with results obtained under every

program as per the schedule. Eg: At the end of lab 2, both lab 1 & lab 2 programs

should be submitted in the file.

✓ Marks will be awarded for each lab submission, ie. 10M for lab 1&2. Marks will

be reduced if students miss out programs.

✓ In this way there will be 3 such evaluation with total of 60M, along with one

internal exam.

 End semester assessment of 2-hour duration: 40%

✓ A complete C program using functions will be asked. The given program must be

iii

worked out in code blocks and compiled. The C program code should be

submitted. The name of file should be like regno.c Eg: 20100345.c

✓ All laboratory experiments (TWELVE nos) are to be included for practical

examination.

✓ Strictly follow the instructions as printed on the cover page of answer script

✓ Marks distribution: Procedure + Conduction:15+25 (40)

✓ Change of experiment is not allowed.

Note:

1. Students shall do all the programming exercises in CODE BLOCKS only. The URL

for downloading and procedure is given below.

2. An additional lab exercise on Structures / Pointers (self-study) is kept at the end for

student’s reference.

Procedure for CODE BLOCKS downloading and installing.

Code:Blocks is a free C/C++ and Fortran IDE built to meet the most demanding

needs of its users. It is designed to be very extensible and fully configurable.

URL: https://www.codeblocks.org/downloads/binaries/

https://www.codeblocks.org/downloads/

In this URL you may be able to download for the following operating systems.

• Windows XP / Vista / 7 / 8.x / 10

• Linux 32 and 64-bit

• Mac OS X

Please look into the below YouTube link which details how to download and install

code blocks for windows 10.

YouTube: https://www.youtube.com/watch?v=GWJqsmitR2I

https://www.codeblocks.org/downloads/binaries/
http://www.codeblocks.org/downloads/
http://www.codeblocks.org/downloads/
https://www.codeblocks.org/downloads/binaries/#imagesoswindows48pnglogo-microsoft-windows
https://www.codeblocks.org/downloads/binaries/#imagesoslinux48pnglogo-linux-32-and-64-bit
https://www.codeblocks.org/downloads/binaries/#imagesosapple48pnglogo-mac-os-x
https://www.youtube.com/watch?v=GWJqsmitR2I

4

Sample Lab Observation Note Preparation

Title: SIMPLE C PROGRAMS

1. Program to find area of the circle. (Hint: Area=3.14*r*r)

//program to find area of circle #include<stdio.h>

int main()

{

int radius; float area;

printf(“Enter the radius\n”); scanf(“%d”, &radius); area=3.14*radius*radius;

printf("My name is abcd”); Name should be printed in every prog.

printf("The area of circle for given radius is: %f", area); return 0;

}

Sample input and output: Screen shot of result – must be included.

5

LAB NO.: 1

INTRODUCTION

Objectives

In this lab, student will be able to:

A. Learn how to use pointers.

B. To sort the given names using array of pointers.

The pointer in C language is a variable which stores the address of another variable. This

variable can be of type int, char, array, function, or any other pointer. The size of the pointer

depends on the architecture. However, in 32-bit architecture the size of a pointer is 2 byte.

Declaration and initialization of pointers

int x=10;

int *y; // Declaration of Pointer variable

y=&x; // Storing address of x variable in y pointer variable

Usage of pointers

int a=3;

int *b;

b=&a;

printf(“Value at address %u is %d”, b, *b);

The output of above code will be something like given below.

Value at address 605764 is 3

Array of pointers:

“Array of pointers” is an array of the pointer variables. It is also known as pointer

arrays.

 Syntax:

 int *var_name[array_size];

Declaration of an array of pointers:

https://www.geeksforgeeks.org/pointers-in-c-and-c-set-1-introduction-arithmetic-and-array/
https://www.geeksforgeeks.org/pointers-in-c-and-c-set-1-introduction-arithmetic-and-array/
https://www.geeksforgeeks.org/pointers-c-examples/

6

 int *ptr[3];

ALGORITHM

1. Start

2. Read n for number of names to be sorted

3. Read the names

4. Set loop i=0 to n and j=1 to n

5. Compare the first name with second name if is greater than 0

6. Interchange the first name and the second name using third variable

7. Repeat until all the names are sorted

8. Print the sorted names

9. Stop

7

LAB NO.: 2

Recursion and Memory Allocation Functions

In this lab, student will be able to:

A. Learn how to use memory allocation functions

B. Learn how to use recursion

A. Memory allocation functions:

C malloc() method

The “malloc” or “memory allocation” method in C is used to dynamically allocate a single

large block of memory with the specified size. It returns a pointer of type void which can

be cast into a pointer of any form. It doesn’t Initialize memory at execution time so that it

has initialized each block with the default garbage value initially.

Syntax:

ptr = (cast-type*) malloc(byte-size)

C calloc() method

1. “calloc” or “contiguous allocation” method in C is used to dynamically allocate the

specified number of blocks of memory of the specified type. it is very much similar to

malloc() but has two different points and these are:

2. It initializes each block with a default value ‘0’.

3. It has two parameters or arguments as compare to malloc().

Syntax:

ptr = (cast-type*)calloc(n, element-size);

here, n is the no. of elements and element-size is the size of each element.

C free() method

“free” method in C is used to dynamically de-allocate the memory. The memory allocated

using functions malloc() and calloc() is not de-allocated on their own. Hence the free()

8

method is used, whenever the dynamic memory allocation takes place. It helps to reduce

wastage of memory by freeing it.

Syntax:

free(ptr);

C realloc() method

“realloc” or “re-allocation” method in C is used to dynamically change the memory

allocation of a previously allocated memory. In other words, if the memory previously

allocated with the help of malloc or calloc is insufficient, realloc can be used

to dynamically re-allocate memory. re-allocation of memory maintains the already present

value and new blocks will be initialized with the default garbage value.

Syntax:

ptr = realloc(ptr, newSize);

B) Algorithm to reverse of a given number using recursion.

Recursion in C

In C, When a function calls a copy of itself then the process is known as Recursion. To put

it short, when a function calls itself then this technique is known as Recursion.

If a function calls itself then the function is known as recursive function.

Example:

int fib(int num)

{

if (num==1 || num==2)

return 1;

else

return (fib(num-1)+fib(num-2));

9

Iterative method

Input: num

(1) Initialize rev_num = 0

(2) Loop while num > 0

 (a) Multiply rev_num by 10 and add remainder of num

 divide by 10 to rev_num

 rev_num = rev_num*10 + num%10;

 (b) Divide num by 10

(3) Return rev_num

Recursive method

 reverse(num, rev)

{

 if(num==0)

 return rev;

 else

 return reverse (num/10, rev*10 + num%10);

}

Output:

Enter any number: 49212

Reverse of input number is: 21294

10

LAB NO.: 3

Stack and its Operations

In this lab, student will be able to:

(A) Learn how to implement following operations on the stack using array.

(i) PUSH

(ii) POP

(iii) PEEK

A Stack is a data structure following the LIFO (Last In, First Out) principle.

PUSH Operation

Push operation refers to inserting an element in the stack. Since there’s only one position at

which the new element can be inserted — Top of the stack, the new element is inserted at

the top of the stack.

POP Operation

Pop operation refers to the removal of an element. Again, since we only have access to the

element at the top of the stack, there’s only one element that we can remove. We just

remove the top of the stack. Note: We can also choose to return the value of the popped

element back, its completely at the choice of the programmer to implement this.

PEEK Operation

Peek operation allows the user to see the element on the top of the stack. The stack is not

11

modified in any manner in this operation.

ALGORITHMS:

PUSH(item)

Step 1: Read an element to be pushed on to stack item

Step 2: check overflow condition of stack before inserting element into stack Top=max-1

Step 3: update the top pointer and insert an element into stack

Top=top+1

S[top] <-item

POP(item)

Step1: check underflow condition of stack before deleting element from stack top=-1

Step2:Display deleted element pointed by top

Deleted element<- s[top]

Step3: Decrement top pointer by 1

top<-top-1

Peek-

1) if top==NULL then print “empty stack”

2) go to step 3

3) return stack[top];

4) end

OUTPUT:

Enter the size of STACK[MAX=100]:10

 STACK OPERATIONS USING ARRAY

 1.PUSH

 2.POP

 3.DISPLAY

 4.EXIT

 Enter the Choice:1

12

 Enter a value to be pushed:12

 Enter the Choice:1

 Enter a value to be pushed:24

 Enter the Choice:1

 Enter a value to be pushed:98

 Enter the Choice:3

 The elements in STACK

98

24

12

 Press Next Choice

 Enter the Choice:2

 The popped elements is 98

 Enter the Choice:3

 The elements in STACK

24

12

 Press Next Choice

 Enter the Choice:4

 EXIT POINT

13

LAB NO.: 4

Queue and its Operations

In this lab, student will be able to:

A) Learn how to implement following operations on the Queue using array.

(i) Enqueue

(ii) Dequeue

(iii) Display

Queue is a data structure following the FIFO(First In, First Out) principle.

Enqueue Operation

Enqueue means inserting an element in the queue. In a normal queue at a ticket counter,

where does a new person go and stand to become a part of the queue? The person goes and

stands in the back. Similarly, a new element in a queue is inserted at the back of the queue.

Dequeue Operation

Dequeue means removing an element from the queue. Since queue follows the FIFO

principle we need to remove the element of the queue which was inserted at first. Naturally,

the element inserted first will be at the front of the queue so we will remove the front element

and let the element behind it be the new front element.

14

ALGORITHMS

Enqueue():

Step 1 - Check whether queue is FULL. (rear == SIZE-1)

Step 2 - If it is FULL, then display "Queue is FULL!!! Insertion is not possible!!!" and

terminate the function.

Step 3 - If it is NOT FULL, then increment rear value by one (rear++) and set queue[rear]

= value.

Dequeue():

Step 1 - Check whether queue is EMPTY. (front == rear)

Step 2 - If it is EMPTY, then display "Queue is EMPTY!!! Deletion is not possible!!!" and

terminate the function.

Step 3 - If it is NOT EMPTY, then increment the front value by one (front ++). Then

display queue[front] as deleted element. Then check whether both front and rear are equal

(front == rear), if it TRUE, then set both front and rear to '-1' (front = rear = -1).

Display():

Step 1 - Check whether queue is EMPTY. (front == rear)

Step 2 - If it is EMPTY, then display "Queue is EMPTY!!!" and terminate the function.

Step 3 - If it is NOT EMPTY, then define an integer variable 'i' and set 'i = front+1'.

Step 4 - Display 'queue[i]' value and increment 'i' value by one (i++). Repeat the same

until 'i' value reaches to rear (i <= rear)

OUTPUT:

Queue using Array

1.Insertion

2.Deletion

3.Display

4.Exit

Enter the Choice:1

 Enter no 1:10

15

Enter the Choice:1

 Enter no 2:54

Enter the Choice:1

 Enter no 3:98

Enter the Choice:1

 Enter no 4:234

Enter the Choice:3

 Queue Elements are:

 10

54

98

234

Enter the Choice:2

 Deleted Element is 10

Enter the Choice:3

 Queue Elements are:

 54

98

234

Enter the Choice:4

16

LAB NO.: 5

Circular Queue and its Operations

In this lab, student will be able to:

(A) Learn how to implement following operations on the Queue using array.

(i) Enqueue

(ii) Dequeue

There was one limitation in the array implementation of Queue. If the rear reaches to the

end position of the Queue then there might be possibility that some vacant spaces are left in

the beginning which cannot be utilized. So, to overcome such limitations, the concept of the

circular queue was introduced.

ALGORITHMS:

The circular queue work as follows:

• two pointers FRONT and REAR

• FRONT track the first element of the queue

• REAR track the last elements of the queue

• initially, set value of FRONT and REAR to -1

https://www.javatpoint.com/data-structure-queue

17

1. Enqueue Operation

• check if the queue is full

• for the first element, set value of FRONT to 0

• circularly increase the REAR index by 1 (i.e. if the rear reaches the end, next it would be

at the start of the queue)

• add the new element in the position pointed to by REAR

2. Dequeue Operation

• check if the queue is empty

• return the value pointed by FRONT

• circularly increase the FRONT index by 1

• for the last element, reset the values of FRONT and REAR to -1

However, the check for full queue has a new additional case:

• Case 1: FRONT = 0 && REAR == SIZE - 1

• Case 2: FRONT = REAR + 1

Output:

18

LAB NO.: 6

Singly Linked List and its Operations

In this lab, student will be able to:

(A) Learn how to perform. Following operations on Singly linked list:

i. Insertion

ii. Deletion

iii. Searching

iv. Traversal

A Singly-linked list is a collection of nodes linked together in a sequential way where

each node of the singly linked list contains a data field and an address field that contains

the reference of the next node.

The structure of the node in the Singly Linked List is

Node {

 int data // variable to store the data of the node

 Node next // variable to store the address of the next node

}

The nodes are connected to each other in this form where the value of the next variable

of the last node is NULL i.e. next = NULL, which indicates the end of the linked list.

19

ALGORITHMS:

Insertion at beginning

1) Allocate memory for new node.

2) Set new_node data = val

3) Set new_node next = start

4) Set start = new _node

5) End.

Insertion

at end

3) Set new_node next = null

4) Set ptr = start

5) Set step 6

while

Ptr next!=

NULL

6) Set ptr = ptr next

[END OF LOOP]

7) Set ptr next = new_node

8) Exit

20

Search

1) Initialise set ptr = start

2) Repeat step 3 while (ptr)!=NULL

3) If val =

ptr data Set

pos = ptr

Gotostep 5

4) Set pos = NULL(-1)

5) Exit

Delete

1) Set ptr = Start

2) Set start = start next

3) Free ptr

4) Exit

Traversal

1. Create a temporary variable for traversing. Assign reference of head node to it,

say temp = head.

2. Repeat below step till temp != NULL.

3. temp->data contains the current node data. You can print it or can perform some calculation

on it.

4. Once done, move to next node using temp = temp->next;.

5. Go back to 2nd step.

Output:

*********Main Menu*********
Choose one option from the following list ...
===
1.Insert in begining
2.Insert at last
3.Insert at any random location
4.Delete from Beginning

21

5.Delete from last
6.Delete node after specified location
7.Search for an element
8.Show
9.Exit
Enter your choice?
1
Enter value
1
Node inserted

22

LAB NO.: 7

Doubly Linked List and its Operations

In this lab, student will be able to:

(A) Learn how to perform. Following operations on doubly linked list:

v. Insertion

vi. Deletion

vii. Searching

A Doubly Linked List contains an extra memory to store the address of the previous node,

together with the address of the next node and data which are there in the singly linked list. So,

here we are storing the address of the next as well as the previous nodes.The following is the

structure of the node in the Doubly Linked List(DLL):

DLLNode {

 int val // variable to store the data of the node

 DLLNode prev // variable to store the address of the previous node

 DLLNode next // variable to store the address of the next node

}

The nodes are connected to each other in this form where the first node has prev =

NULL and the last node has next = NULL.

23

ALGORITHMS:

Insertion

1) Allocate memory for new_ node.

2) Set new_node→data = val

3) Set new_node→next = start

4) Set start = new _node

5) End.

Deletion

1) Set ptr = Start

2) Set start = start → next

3) Free ptr

Exit

Searching

 1)Initialise set ptr = start

 2) Repeat step 3 while (ptr)!=NULL

 3) If val = ptr→data

 4) Set pos = ptr

 Gotostep 5

 5)Set pos = NULL(-1)

 Exit

Output:

24

LAB NO.: 8

Circular Linked List and its Operations

In this lab, student will be able to:

(B) Learn how to perform. Following operations on circular linked list:

(i) Insertion

(ii) Deletion

(iii) Searching

• A circular linked list is either a singly or doubly linked list in which there are

no NULL values. Here, we can implement the Circular Linked List by making the

use of Singly or Doubly Linked List. In the case of a singly linked list, the next of

the last node contains the address of the first node and in case of a doubly-linked

list, the next of last node contains the address of the first node and prev of the first

node contains the address of the last node.

•

ALGORITHMS

Insertion in circular linked list at the beginning

Step 1: IF PTR = NULL

 Write OVERFLOW

 Go to Step 11

 [END OF IF]

Step 2: SET NEW_NODE = PTR

Step 3: SET PTR = PTR -> NEXT

Step 4: SET NEW_NODE -> DATA = VAL

Step 5: SET TEMP = HEAD

Step 6: Repeat Step 8 while TEMP -> NEXT != HEAD

Step 7: SET TEMP = TEMP -> NEXT

25

[END OF LOOP]

Step 8: SET NEW_NODE -> NEXT = HEAD

Step 9: SET TEMP → NEXT = NEW_NODE

Step 10: SET HEAD = NEW_NODE

Step 11: EXIT

Deletion at the end in circular linked list

Step 1: IF HEAD = NULL

 Write UNDERFLOW

 Go to Step 8

 [END OF IF]

Step 2: SET PTR = HEAD

Step 3: Repeat Steps 4 and 5 while PTR -> NEXT != HEAD

Step 4: SET PREPTR = PTR

Step 5: SET PTR = PTR -> NEXT

[END OF LOOP]

Step 6: SET PREPTR -> NEXT = HEAD

Step 7: FREE PTR

Step 8: EXIT

Output Insert at the beginning

Deletion at the end

26

27

LAB NO.: 9

Stacks and Queues Using Linked List

In this lab, student will be able to:

(B) Learn how to implement operations of Queue (Enqueue and Dequeue) and Stack

(PUSH and POP) using Linked List.

Algorithm for Implementing a Stack using Linked List:

1. PUSH() Operation:

Step 1: Start

Step 2: Create a node new and declare variable top

Step 3: Set new data part to be Null // The first node is created, having null value and top pointing

to it

Step 4: Read the node to be inserted.

Step 5: Check if the node is Null, then print "Insufficient Memory"

Step 6: If node is not Null, assign the item to data part of new and assign top to link part of new

and also point stack head to new.

2. POP() Operation:

Step 1: Start

Step 2: Check if the top is Null, then print "Stack Underflow."

Step 3: If top is not Null, assign the top's link part to ptr and assign ptr to stack_head's link part.

Step 4: Stop

3. PEEK() Operation:

Step 1: Start

Step 2: Print or store the node pointed by top variable

Step 3: Stop

Algorithm for implementing operations on queue using Linked List:

To implement queue using linked list, we need to set the following things before implementing

actual operations.

28

Step 1 - Include all the header files which are used in the program. And declare all the user defined

functions.

Step 2 - Define a 'Node' structure with two members data and next.

Step 3 - Define two Node pointers 'front' and 'rear' and set both to NULL.

Step 4 - Implement the main method by displaying Menu of list of operations and make suitable

function calls in the main method to perform user selected operation.

enQueue(value) - Inserting an element into the Queue

We can use the following steps to insert a new node into the queue...

Step 1 - Create a newNode with given value and set 'newNode → next' to NULL.

Step 2 - Check whether queue is Empty (rear == NULL)

Step 3 - If it is Empty then, set front = newNode and rear = newNode.

Step 4 - If it is Not Empty then, set rear → next = newNode and rear = newNode.

deQueue() - Deleting an Element from Queue

We can use the following steps to delete a node from the queue...

Step 1 - Check whether queue is Empty (front == NULL).

Step 2 - If it is Empty, then display "Queue is Empty!!! Deletion is not possible!!!" and terminate

from the function

Step 3 - If it is Not Empty then, define a Node pointer 'temp' and set it to 'front'.

Step 4 - Then set 'front = front → next' and delete 'temp' (free(temp)).

display() - Displaying the elements of Queue

We can use the following steps to display the elements (nodes) of a queue...

Step 1 - Check whether queue is Empty (front == NULL).

Step 2 - If it is Empty then, display 'Queue is Empty!!!' and terminate the function.

Step 3 - If it is Not Empty then, define a Node pointer 'temp' and initialize with front.

Step 4 - Display 'temp → data --->' and move it to the next node. Repeat the same until 'temp'

reaches to 'rear' (temp → next != NULL).

Step 5 - Finally! Display 'temp → data ---> NULL'.

Output:Queue :10->20->30->NULL

After dequeue the new Queue :20->30->NULL

After dequeue the new Queue :30->NULL

29

LAB NO.: 10

Binary Search Tree and its operations

Objective:

After this lab the students will be able to understand the following operations in BST:

a) Insert an element into a binary search tree

b) Delete an element from a binary search tree

c) Search for a key element in a binary search tree

A Binary Search Tree (BST) is a tree in which all the nodes follow the below-mentioned

properties −

• The value of the key of the left sub-tree is less than the value of its parent (root)

node's key.

• The value of the key of the right sub-tree is greater than or equal to the value of its

parent (root) node's key.

Thus, BST divides all its sub-trees into two segments; the left sub-tree and the right sub-

tree and can be defined as −

left_subtree (keys) < node (key) ≤ right_subtree (keys)

Node

Define a node having some data, references to its left and right child nodes.

struct node {

 int data;

 struct node *leftChild;

 struct node *rightChild;

};

Algorithms for insertion of a node in BST:

1. Create a new BST node and assign values to it.

30

2. insert(node, key)

 i) If root == NULL,

 return the new node to the calling function.

 ii) if root=>data < key

 call the insert function with root=>right and assign the return value in root=>right.

 root->right = insert(root=>right,key)

 iii) if root=>data > key

 call the insert function with root->left and assign the return value in root=>left.

 root=>left = insert(root=>left,key)

3. Finally, return the original root pointer to the calling function.

Algorithms for deletion of a node in BST:

To delete the given node from the binary search tree(BST), we should follow the below

rules.

1. Leaf Node

If the node is leaf (both left and right will be NULL), remove the node directly and free its

memory.

2.Node with Right Child

If the node has only right child (left will be NULL), make the node points to the right node

and free the node.

3.Node with Left Child

If the node has only left child (right will be NULL), make the node points to the left node

and free the node.

31

4.Node has both left and right child

If the node has both left and right child,

(i) .find the smallest node in the right subtree. say min

(ii) .make node->data = min

(iii) .Again delete the min node.

Algorithm for searching an element in BST:

1. Compare the element with the root of the tree.

2. If the item is matched then return the location of the node.

3. Otherwise check if item is less than the element present on root, if so then move to

the left sub-tree.

4. If not, then move to the right sub-tree.

5. Repeat this procedure recursively until match found.

6. If element is not found then return NULL.

Output

32

LAB NO.: 11

Binary Tree Traversal Algorithms

Objective:

After this lab, the students will be able to perform following traversal algorithms on binary tree:

(i) Preorder

(ii) Inorder

(iii) Postorder

Algorithm:

Preorder

(node)

1) repeat step 2 to step 4 while tree!=NULL

2) write “TREE→data”

3) preorder(Tree→left)

4) Preorder(Tree→Right)

5) End

Postorder (node)

1) repeat step 2 to step 4 while tree!=NULL

2) postorder(Tree→left)

3) Postorder(Tree→Right)

4) Write”TREE→data”

5) End

Inorder (node)
1) repeat step 2 to step 4 while tree!=NULL

2) inorder(Tree→left)

3) write “TREE→data”

4) inorder(Tree Right)

5) End

Output:

Enter your choice:

1. Insert

2. Traverse via infix

3. Traverse via prefix

4. Traverse via postfix

33

5. Exit

Choice: 1

Enter element to insert: 5

Enter your choice:

1. Insert

2. Traverse via infix

3. Traverse via prefix

4. Traverse via postfix

5. Exit

Choice: 1

Enter element to insert: 3

Enter your choice:

1. Insert

2. Traverse via infix

3. Traverse via prefix

4. Traverse via postfix

5. Exit

Choice: 1

Enter element to insert: 4

Enter your choice:

1. Insert

2. Traverse via infix

3. Traverse via prefix

4. Traverse via postfix

5. Exit

Choice: 1

Enter element to insert: 6

Enter your choice:

1. Insert

2. Traverse via infix

3. Traverse via prefix

4. Traverse via postfix

5. Exit

Choice: 1

Enter element to insert: 2

Enter your choice:

1. Insert

2. Traverse via infix

3. Traverse via prefix

4. Traverse via postfix

5. Exit

Choice: 2

34

2 3 4 5 6

Enter your choice:

1. Insert

2. Traverse via infix

3. Traverse via prefix

4. Traverse via postfix

5. Exit

Choice: 3

5 3 2 4 6

Enter your choice:

1. Insert

2. Traverse via infix

3. Traverse via prefix

4. Traverse via postfix

5. Exit

Choice: 4

2 4 3 6 5

Enter your choice:

1. Insert

2. Traverse via infix

3. Traverse via prefix

4. Traverse via postfix

5. Exit

Choice: 5

Memory Cleared

PROGRAM TERMINATED

35

LAB NO.: 12

Finding a Minimum and Maximum Element in Binary Search Tree

Objective:

After this lab, the students will be able to perform following operations in binary search tree:

(ii) Finding a Minimum element

(iii) Finding a Maximum element

Binary Search Tree is a node-based binary tree data structure which has the following

properties:

The left subtree of a node contains only nodes with keys lesser than the node’s key.

The right subtree of a node contains only nodes with keys greater than the node’s key.

The left and right subtree each must also be a binary search tree.

Approch for finding minimum element:

Traverse the node from root to left recursively until left is NULL.

The node whose left is NULL is the node with minimum value.

Approch for finding maximum element:

Traverse the node from root to right recursively until right is NULL.

The node whose right is NULL is the node with maximum value.

Output:

Minimum value in BST is 1

Maximum value in BST is 14

36

Lab Exam:

 End semester assessment of 2-hour duration: 40%

✓ A complete C program using functions will be asked. The given program must be

worked out in code blocks and compiled. The C program code should be

submitted. The name of file should be like regno.c Eg: 20100345.c

✓ All laboratory experiments (TWELVE nos) are to be included for practical

examination.

✓ Strictly follow the instructions as printed on the cover page of answer script

✓ Marks distribution: Procedure + Conduction:15+25 (40)

✓ Change of experiment is not allowed.

REFERENCES

1. Behrouz A. Forouzan, Richard F. Gilberg, A Structured Programming Approach

Using C,(3e), Cengage Learning India Pvt. Ltd, India, 2007.

2. Ellis Horowitz, Sartaj Sahni, Susan Anderson and Freed, Fundamentals of

Data Structures in C, (2e), Silicon Press, 2007.

3. Richard F. Gilberg, Behrouz A. Forouzan, Data structures, A Pseudocode

Approach with C, (2e), Cengage Learning India Pvt. Ltd, India , 2009.

4. 4. Tenenbaum Aaron M., Langsam Yedidyah, Augenstein Moshe J., Data

structures using C, Pearson Prentice Hall of India Ltd., 2007.

5. 5. Debasis Samanta, Classic Data Structures, (2e), PHI Learning Pvt. Ltd., India,

2010.

37

DATA STRUCTURE AND C LANGUAGE QUICK REFERENCE

Array

Stores things in order. Has quick lookups by index.

Dynamic Array

An array that automatically grows as you add more items.

Linked List

Also stores things in order. Faster insertions and deletions than arrays, but slower lookups

(you have to "walk down" the whole list).

Queue

Like the line outside a busy restaurant. "First come, first served."

Stack

Like a stack of dirty plates in the sink. The first one you take off the top is the last one you

put down.

Hash Table

Like an array, except instead of indices you can set arbitrary keys for each value.

Tree

Good for storing hierarchies. Each node can have "child" nodes.

Binary Search Tree

Everything in the left subtree is smaller than the current node, everything in the right subtree

is larger. O(\lg{n})O(lgn) lookups, but only if the tree is balanced!

Graph

Good for storing networks, geography, social relationships, etc.

Heap

A binary tree where the smallest value is always at the top. Use it to implement a priority

queue.

Priority Queue

A queue where items are ordered by priority.

https://www.interviewcake.com/concept/array
https://www.interviewcake.com/concept/array
https://www.interviewcake.com/concept/array
https://www.interviewcake.com/concept/array
https://www.interviewcake.com/concept/dynamic-array
https://www.interviewcake.com/concept/dynamic-array
https://www.interviewcake.com/concept/dynamic-array
https://www.interviewcake.com/concept/dynamic-array
https://www.interviewcake.com/concept/linked-list
https://www.interviewcake.com/concept/linked-list
https://www.interviewcake.com/concept/linked-list
https://www.interviewcake.com/concept/linked-list
https://www.interviewcake.com/concept/queue
https://www.interviewcake.com/concept/queue
https://www.interviewcake.com/concept/queue
https://www.interviewcake.com/concept/queue
https://www.interviewcake.com/concept/stack
https://www.interviewcake.com/concept/stack
https://www.interviewcake.com/concept/stack
https://www.interviewcake.com/concept/stack
https://www.interviewcake.com/concept/hash-map
https://www.interviewcake.com/concept/hash-map
https://www.interviewcake.com/concept/hash-map
https://www.interviewcake.com/concept/hash-map
https://www.interviewcake.com/concept/tree
https://www.interviewcake.com/concept/tree
https://www.interviewcake.com/concept/tree
https://www.interviewcake.com/concept/tree
https://www.interviewcake.com/concept/binary-search-tree
https://www.interviewcake.com/concept/binary-search-tree
https://www.interviewcake.com/concept/binary-search-tree
https://www.interviewcake.com/concept/binary-search-tree
https://www.interviewcake.com/concept/graph
https://www.interviewcake.com/concept/graph
https://www.interviewcake.com/concept/graph
https://www.interviewcake.com/concept/graph
https://www.interviewcake.com/concept/heap
https://www.interviewcake.com/concept/heap
https://www.interviewcake.com/concept/heap
https://www.interviewcake.com/concept/heap
https://www.interviewcake.com/concept/priority-queue
https://www.interviewcake.com/concept/priority-queue
https://www.interviewcake.com/concept/priority-queue
https://www.interviewcake.com/concept/priority-queue

38

C LANGUAGE REFERENCE

PREPROCESSOR

// Comment to end of line

/* Multi-line comment */

#include <stdio.h> // Insert standard header file

#include "myfile.h" // Insert file in current directory

#define X some text // Replace X with some text

#define F(a,b) a+b // Replace F(1,2) with 1+2

#define X \

some text // Line continuation

#undef X // Remove definition

#if defined(X) // Condional compilation (#ifdef X)

#else // Optional (#ifndef X or #if !defined(X))

#endif // Required after #if, #ifdef

LITERALS

255, 0377, 0xff // Integers (decimal, octal, hex)

2147463647L, 0x7fffffffl // Long (32-bit) integers 123.0,

1.23e2 // double (real) numbers

‘a’, ‘\141’, ‘\x61’ // Character (literal, octal, hex)

‘\n’, ‘\\’, ‘\’’, ‘\”’, // Newline, backslash, single quote, double quote

“string\n” // Array of characters ending with newline and \0

“hello” “world” // Concatenated strings

true, false // bool constants 1 and 0

DECLARATIONS

int x; // Declare x to be an integer (value undefined)

int x=255; // Declare and initialize x to 255

short s; long 1; // Usually 16 or 32 bit integer (int may be either)

char c= ‘a’; // Usually 8 bit character

unsigned char u=255; signed char m=-1; // char might be either

unsigned long x=0xffffffffL; // short, int, long are signed

float f; double d; // Single or double precision real (never unsigned)

39

bool b=true; // true or false, may also use int (1 or 0)

int a, b, c; // Multiple declarations

int a[10]; // Array of 10 ints (a[0] through a[9])

int a[]={0,1,2}; // Initialized array (or a[3]={0,1,2};)

int a[2][3]={{1,2,3},{4,5,6}; // Array of array of ints

char s[]= “hello”; // String (6 elements including ‘\0’)

int* p; // p is a pointer to (address of) int

char* s= “hello”; // s points to unnamed array containing "hello"

void* p=NULL; // Address of untyped memory (NULL is 0)

int& r=x; // r is a reference to (alias of) int x

enum weekend {SAT, SUN}; // weekend is a type with values SAT and SUN

enum weekend day; // day is a variable of type weekend

enum weekend {SAT=0,SUN=1}; // Explicit representation as int

enum {SAT,SUN} day; // Anonymous enum

typedef String char*; // String s; means char* s;

const int c=3; // Constants must be initialized, cannot assign

const int* p=a; // Contents of p (elements of a) are constant

int* const p=a; // p (but not contents) are constant

const int* const p=a; // Both p and its contents are constant

const int& cr=x; // cr cannot be assigned to change x

STORAGE CLASSES

int x; // Auto (memory exists only while in scope)

static int x; // Global lifetime even if local scope

extern int x; // Information only, declared elsewhere

STATEMENTS

x=y; // Every expression is a statement

int x; // Declarations are statements

; // Empty statement

{ // A block is a single statement

int x; // Scope of x is from declaration to end of

block

a; // In C, declarations must precede statements

40

}

if (x) a; // If x is true (not 0), evaluate a

else if (y) b; // If not x and y (optional, may be repeated)

else c; // If not x and not y (optional)

while (x) a; // Repeat 0 or more times while x is true

for (x; y; z) a; // Equivalent to: x; while(y) {a; z;}

do a; while (x); // Equivalent to: a; while(x) a;

switch (x) { // x must be int

case X1: a; // If x == X1 (must be a const), jump here

case X2: b; // Else if x == X2, jump here

default: c; // Else jump here (optional)

}

break; // Jump out of while, do, for loop, or switch

continue; // Jump to bottom of while, do, or for loop

return x; // Return x from function to caller

try { a; }

catch (T t) { b; } // If a throws T, then jump here

catch (...) { c; } // If a throws something else, jump here

FUNCTIONS

int f(int x, int); // f is a function taking 2 ints and returning int

void f(); // f is a procedure taking no arguments

void f(int a=0); // f() is equivalent to f(0)

f(); // Default return type is int

inline f(); // Optimize for speed

f() { statements; } // Function definition (must be global)

Function parameters and return values may be of any type. A function must either

be declared or defined before it is used. It may be declared first and defined later.

Every program consists of a set of global variable declarations and a set of function

definitions (possibly in separate files), one of which must be:

int main() { statements... } or

int main(int argc, char* argv[]) { statements... }

argv is an array of argc strings from the command line. By convention, main returns

status 0 if successful, 1 or higher for errors.

41

EXPRESSIONS

Operators are grouped by precedence, highest first. Unary operators and assignment

evaluate right to left. All others are left to right. Precedence does not affect order of

evaluation which is undefined. There are no runtime checks for arrays out of

bounds, invalid pointers etc.

T::X // Name X defined in class T

N::X // Name X defined in namespace N

::X // Global name X

t.x // Member x of struct or class t

p → x // Member x of struct or class pointed to by p

a[i] // i’th element of array a

f(x, y) // Call to function f with arguments x and y

T(x, y) // Object of class T initialized with x and y

x++ // Add 1 to x, evaluates to original x (postfix)

x-- // Subtract 1 from x, evaluates to original x

sizeof x // Number of bytes used to represent object x

sizeof(T) // Number of bytes to represent type T

++x // Add 1 to x, evaluates to new value (prefix)

--x // Subtract 1 from x, evaluates to new value

~x // Bitwise complement of x

!x // true if x is 0, else false (1 or 0 in C)

-x // Unary minus

+x // Unary plus (default)

&x // Address of x

p // Contents of address p (&x equals x)

x * y // Multiply

x / y // Divide (integers round toward 0)

x % y // Modulo (result has sign of x)

x + y // Add, or &x[y]

x – y // Subtract, or number of elements from *x to *y

x << y // x shifted y bits to left (x * pow(2, y))

x >> y // x shifted y bits to right (x / pow(2, y))

x < y // Less than

42

x <= y // Less than or equal to

x > y // Greater than

x >= y // Greater than or equal to

x == y // Equals

x != y // Not equals

x & y // Bitwise and (3 & 6 is 2)

x ^ y // Bitwise exclusive or (3 ^ 6 is 5)

x | y // Bitwise or (3 | 6 is 7)

x && y // x and then y (evaluates y only if x (not 0))

x || r // x or else y (evaluates y only if x is false(0))

x = y // Assign y to x, returns new value of x

x += y // x = x + y, also -= *= /= <<= >>= &= |= ^=

x ? y : z // y if x is true (nonzero), else z

throw x // Throw exception, aborts if not caught

x, y // evaluates x and y, returns y (seldom used)

STDIO.H.H, STDIO.H

cin >> x >> y; // Read words x and y (any type) from stdin

cout << “x=” << 3 << endl; // Write line to stdout

cerr « x « y « flush; // Write to stderr and flush

c = cin.get(); // c = getchar();

cin.get(c); // Read char

cin.getline(s, n, ‘\n’); // Read line into char s[n] to ‘\n’, (default)

if (cin) // Good state (not EOY)?

// To read/write any type T:

STRING (Variable sized character array)

string s1, s2= “hello”; //Create strings

sl.size(), s2.size(); // Number of characters: 0, 5

sl += s2 + ‘ ’ + “world”; // Concatenation

sl == “hello world”; // Comparison, also <, >, !=, etc.

s1[0]; // ‘h’

sl.substr(m, n); // Substring of size n starting at sl[m]

43

sl.c_str(); // Convert to const char*

getline(cin, s); // Read line ending in ‘\n’

asin(x); acos(x); atan(x); // Inverses

atan2(y, x); // atan(y/x)

sinh(x); cosh(x); tanh(x); // Hyperbolic

exp(x); log(x); log10(x); // e to the x, log base e, log base 10

pow(x, y); sqrt(x); // x to the y, square root

ceil(x); floor(x); // Round up or down (as a double)

fabs(x); fmod(x, y); // Absolute value, x mod y

