

Third Year B. Tech.

CSE (Cyber Security)

Operating Systems

[CSE_3163]

Laboratory Manual

Vision

Excellence in Technical Education through Innovation and Teamwork.

Mission

Educate students professionally to face societal challenges by providing a healthy

learning environment grounded well in the principles of engineering, promoting

creativity, and nurturing teamwork.

Goal

Our goal is to be a world class technical institution fostering innovation, leadership

and entrepreneurial spirit.

Program Outcomes:

[PO.1] Engineering Knowledge: Apply knowledge of mathematics, science,

engineering fundamentals and an engineering specialization to the solution

of complex engineering problems.

[PO.2] Problem Analysis: Identify, formulate, research literature, and analyze

complex engineering problems reaching substantiated conclusions using first

principles of mathematics,natural sciences and engineering sciences.

[PO.3] Design/ Development of Solutions: Design solutions for complex

engineering problemsand design system components or processes that meet

specified needs with appropriateconsideration for public health and safety,

cultural, societal, and environmental considerations. [PO.4] Conduct

investigations of complex problems using research-based knowledge and

research methods including design of experiments, analysis and

interpretation of data and synthesis of information to provide valid

conclusions.

[PO.4] Conduct investigations of complex problems using research-based

knowledge and research methods including design of experiments,

analysis and interpretation of data and synthesis of information to provide

valid conclusions.

[PO.5] Modern Tool Usage: Create, select and apply appropriate techniques,

resources and modern engineering and IT tools including prediction and

modelling to complex engineering activities with an under- standing of

the limitations.

[PO.6] The Engineer and Society: Apply reasoning informed by contextual

knowledge to assess societal, health, safety, legal and cultural issues and

the consequent responsibilities relevant to professional engineering

practice.

[PO.7] Environment and Sustainability: Understand the impact of professional

engineering solutions in societal and environmental contexts and

demonstrate knowledge of and need for sustainable development.

[PO.8] Ethics: Apply ethical principles and commit to professional ethics and

responsibilitiesand norms of engineering practice.

[PO.9] Individual and Teamwork: Function effectively as an individual, and as a

member or leader in diverse teams and in multi-disciplinary settings.

[PO.10] Communication: Communicate effectively on complex engineering

activities with theengineering community and with society at large, such

as being able to comprehend and write effective reports and design

documentation, make effective presentations, and give and receive clear

instructions.

[PO.11] Project Management and Finance: Demonstrate knowledge and

understanding of engineering and management principles and apply these

to owners own work, as a member and leader in a team, to manage

projects and in multidisciplinary environments.

[PO.12] Life-long Learning: Recognize the need for and have the preparation and

ability to engage in independent and life-long learning in the broadest

context of technological change.

i

CONTENTS

LA

B

NO.

TITLE

PAGE

NO.

REMARKS

COURSE OBJECTIVES AND OUTCOMES ii

EVALUATION PLAN ii

INSTRUCTIONS TO STUDENTS iii

1 UNIX SHELL COMMANDS 1

2 ADVANCED UNIX SHELL COMMANDS 13

3 UNIX SHELL PROGRAMMING (SHELL SCRIPTING) 24

4 UNIX SHELL PROGRAMMING (SHELL SCRIPTING) 34

5 SYSTEM CALLS FOR PROCESS CONTROL 41

6 PROCESS SCHEDULING 50

7 CLASSICAL PROBLEMS OF SYNCHRONIZATION 54

8 BANKERS ALGORITHM 59

9
DYNAMIC STORAGE ALLOCATION STRATEGY FOR

FIRST FIT AND BEST FIT
63

10 PAGE REPLACEMENT ALGORITHMS 65

11 DISK SCHEDULING ALGORITHM 67

12 SCHEDULING IN REAL TIME SYSTEMS 71

REFERENCES 74

ii

Course Objectives

• To describe the basics of Linux/Unix shell scripting.

• To implement operating system concepts.

Course Outcomes

At the end of this course, students will be able to

• Work on Unix and Unix like Operating Systems.

• Efficiently use the shell commands.

• Implement shell script on Unix and Unix like platforms.

• Write, compile and debug programs in C language on Unix and Unix like plat-

forms.

• Implement of Operating System concepts using C language on Unix and Unix like

platforms.

Evaluation plan

• Internal Assessment Marks : 60%

✓ Continuous evaluation component (biweekly):10 marks

✓ The assessment will depend on punctuality, program execution, maintaining the

observation note and answering the questions in viva voce

• End semester assessment of 2 hour duration: 40%

iii

INSTRUCTIONS TO THE STUDENTS

Pre- Lab Session Instructions

• Students should carry the Lab Manual Book and the required stationery to every

lab session.

• Be in time and follow the institution dress code.

• Must Sign in the log register provided.

• Make sure to occupy the allotted seat and answer the attendance.

• Adhere to the rules and maintain the decorum.

In- Lab Session Instructions

• Follow the instructions on the allotted exercises.

• Show the program and results to the instructors on completion of experiments.

• On receiving approval from the instructor, copy the program and results in the

Lab record.

• Prescribed textbooks and class notes can be kept ready for reference if required.

• Implement the lab exercises on UNIX or other Unix like platform. Use C for high

level language implementation.

General Instructions for the exercises in Lab

• Implement the given exercise individually and not in a group.

• The programs should meet the following criteria:

✓ Programs should be interactive with appropriate prompt messages, error

messages if any, and descriptive messages for outputs.

✓ Programs should perform input validation (Data type, range error, etc.)

and give appropriate error messages and suggest corrective actions.

✓ Comments should be used to give the statement of the problem and every

function should indicate the purpose of the function, inputs and outputs.

✓ Statements within the program should be properly indented.

✓ Use meaningful names for variables and functions.

✓ Make use of constants and type definitions wherever needed.

iv

• Plagiarism (copying from others) is strictly prohibited and would invite severe

penalty in evaluation.

• The exercises for each week are divided under three sets:

✓ Solved exercise

✓ Lab exercises - to be completed during lab hours

✓ Additional Exercises - to be completed outside the lab or in the lab to en-

hance the skill

• If a student misses a lab class then he/ she must ensure that the experiment is

completed during the repetition class in case of genuine reason (medical certifi-

cate approved by HOD) with the permission of the faculty concerned

• Questions for lab tests and examination are not necessarily limited to the questions

in the manual, but may involve some variations and / or combinations of the ques-

tions.

• A sample note preparation is given as a model for observation.

THE STUDENTS SHOULD NOT

• Bring mobile phones or any other electronic gadgets to the lab.

• Go out of the lab without permission.

LAB NO: 1

1

LAB NO: 1 Date:

UNIX SHELL COMMANDS

Objective:

1. To recall the UNIX special characters and commands.

2. To describe basic commands.

1. UNIX shell and special characters

A shell is an environment in which we can run our commands, programs, and scripts.

There are different flavors of shells, just as there are different flavors of operating

systems. Each flavor of shell has its own set of recognized commands and functions.

Shell Prompt:

The prompt, $, which is called command prompt, is issued by the shell. While the

prompt is displayed, you can type a command. The command is a binary executable.

Once the Enter key is pressed, the shell reads the command line arguments and per-

forms accordingly. It determines the command to be executed by looking for input

executable name placed in standard location (ex: /usr/bin). Multiple arguments can

be provided to the command (executable) separated by spaces.

Following is a simple example of date command which displays current date and time:

$date

Thu Jun 25 08:30:19 MST 2009

Shell Types:

In UNIX there are two major types of shells:

1. The Bourne shell. If you are using a Bourne-type shell, the default prompt is the

$ character.

2. The C shell. If you are using a C-type shell, the default prompt is the % character.

There are again various subcategories for Bourne Shell which are listed as follows:

• Bourne shell (sh)

• Korn shell (ksh)

• Bourne again shell (bash)

• POSIX shell (sh)

LAB NO: 1

2

The different C-type shells follow:

• C shell (csh)

• TENEX/TOPS C shell (tosh)

The original UNIX shell was written in the mid-1970s by Stephen R. Bourne while

he was at AT&T Bell Labs in New Jersey. The Bourne shell was the first shell to

appear on UNIX systems, thus it is referred to as "the shell". The Bourne shell is

usually installed as /bin/sh on most versions of UNIX. For this reason, it is the shell

of choice for writing scripts to use on several different versions of UNIX.

Special Characters:

Before we continue to learn about UNIX shell commands, it is important to know that

there are many symbols and characters that the shell interprets in special ways. This

means that certain type of characters: a) cannot be used in certain situations, b) may

be used to perform special operations, or, c) must be “escaped” if you want to use

them in a normal way.

LAB NO: 1

3

Character Description

\ Escape character. If you want to refer a special character, you must “escape”

it with a backslash first. Example: touch /tamp/filename*

/ Directory separator, used to separate a string of directory names.

Example: /usr/src/unix

. Current directory. Can also “hide” files when it is the first character in a file-

name.

.. Parent directory

~ User's home directory

* Represents 0 or more characters in a filename, or by itself, all files in a direc-

tory. Example: pic*2002 can represent the files pic2002, picJanuary2002,

picFeb292002, etc.

? Represents a single character in a filename. Example: hello?.txt can represent

hello1.txt, helloz.txt, but not hello22.txt

[] Can be used to represent a range of values, e.g. [0-9], [A-Z], etc. Example:

hello[0-2].txt represents the names hello0.txt, hello1.txt, and hello2.txt

| “Pipe”. Redirect the output of one command into another command. Exam-

ple: ls | more

> Redirect the output of a command into a new file. If the file already exists,

over-write it. Example: ls > myfiles.txt

>> Redirect the output of a command onto the end of an existing file. Example:

echo “Mary 555-1234” >> phonenumbers.txt

< Redirect a file as input to a program. Example: more < phonenumbers.txt

<< Reads from a stream literal (an inline file, passed to the standard input) Ex-

ample: tr a-z A-Z << END_TEXT

This is OS lab manual

For IT students

END_TEXT

LAB NO: 1

4

<<< Reads from a string. Example: bc <<< 9+5

; Command separator. Allows you to execute multiple commands on a single

line. Example: cd /var/log ; less messages

&& Command separator as above, but only runs the second command if the first

one finished without errors. Example: cd /var/logs && less messages

& Execute a command in the background, and immediately get your shell back.

Example: find / -name core > /tmp/corefiles.txt &

2. Shell commands and getting help

Executing Commands

Most common commands are located in your shell's “PATH”, meaning that you can

just type the name of the program to execute it. Example: typing ls will execute the ls

command. Your shell's “PATH” variable includes the most common program loca-

tions, such as /bin, /usr/bin, /usr/X11R6/bin, and others. To execute commands that

are not in your current PATH, you have to give the complete location of the command.

[PATH is an environmental variable. To display the value of PATH variable execute

echo $PATH]

Examples: /home/bob/myprogram

./program (Execute a program in the current directory)

~/bin/program (Execute program from a personal bin directory)

[Before executing the program, the program file has to be granted with execution

permission. For granting execute permission the command chmod +x has to be

executed.]

Command Syntax

When interacting with the UNIX operating system, one of the first things you need to

know is that, unlike other computer systems you may be accustomed to, everything in

UNIX is case-sensitive. Be careful when you're typing in commands - whether a character

is upper or lower case does make a difference. For instance, if you want to list your files

with the ls command, if you enter LS you will be told “command not found”. Commands

LAB NO: 1

5

can be run by themselves, or you can pass in additional arguments to make them do dif-

ferent things. Each argument to the command should be separated by space. Typical com-

mand syntax can look something like this:

command [-argument] [-argument] [--argument] [file]

Examples: ls #List files in current directory

ls -l #Lists files in “long” format

ls -l --color #As above, with colorized output

cat filename #Show contents of a file

cat -n filename #Show contents of a file, with line numbers

Getting Help

When you're stuck and need help with a UNIX command, help is usually only a few

keystrokes away! Help on most UNIX commands is typically built right into the com-

mands themselves, available through online help programs (“man pages” and “info

pages”), and of course online.

Many commands have simple “help” screens that can be invoked with special command

flags. These flags usually look like -h or --help. Example: grep –help. “Man Pages” are

the best source of information for most commands can be found in the online manual

pages. To display a command's manual page, type man <commandName>.

Examples: man ls Get help on the “ls” command.

man man A manual about how to use the manual!

To search for a particular word within a man page, type /<word>. To quit from a man

page, just type the “Q” (or q) key.

Sometimes, you might not remember the name of UNIX command and you need to search

for it. For example, if you want to know how to change a file's permissions, you can

search the man page descriptions for the word “permission” like this: man -k permission.

All matched manual page names and short descriptions will be displayed that includes

the keyword “permission” as regular expression.

3. Commands for Navigating the UNIX file systems

The first thing you usually want to do when learning about the UNIX file system is

take some time to look around and see what's there! These next few commands will:

a) Tell you where you are, b) take you somewhere else, and c) show you what's there.

The following are the various commands used for UNIX file system navigation. Note

LAB NO: 1

6

the words enclosed in angular brackets (<>) represents user defined arguments and

should be replaced with actual arguments. Example: ls <dirName> should be replaced

with actual existing directory name such as ls ABC.

a. pwd (“Print Working Directory”): Shows the current location in the directory

tree.

b. cd (“Change Directory”): When typed all by itself, it returns you to your home

directory. Few of the arguments to cd are:

i. cd <dirName>: changes current path to the specified directory name. Ex-

ample: cd /usr/src/unix

ii. cd ~ : “~” is an alias for your home directory. It can be used as a shortcut to your

“home”, or other directories relative to your home

iii. cd ..: Move up one directory. For example, if you are in /home/vic and

you type cd .., you will end up in /home. Note: there should be space be-

tween cd and .. .

iv. cd -: Return to previous directory. An easy way to get back to your previ-

ous location!

c. ls: List all files in the current directory, in column format. Few of the arguments

for ls command are as follows:

i. ls <dirName>: List the files in the specified directory. Example: ls /var/log

ii. ls -l: List files in “long” format, one file per line. This also shows you addi-

tional info about the file, such as ownership, permissions, date, and size.

iii. ls –a: List all files, including “hidden” files. Hidden files are those files that

begin with a “.”,

iv. ls –ld < dirName >: A “long” list of “directory”, but instead of showing the

directory contents, show the directory's detailed information. For example,

compare the output of the following two commands: ls -l /usr/bin ls -ld

/usr/bin

v. ls /usr/bin/d*: List all files whose names begin with the letter “d” in the

/usr/bin directory.

LAB NO: 1

7

3.1 Filenames, Wildcards, and Pathname Expansion

Sometimes you need to run a command on more than one file at a time. The most common

example of such a command is ls, which lists information about files. In its simplest form,

without options or arguments, it lists the names of all files in the working directory except

special hidden files, whose names begin with a dot (.). If you give ls filename arguments,

it will list those files—which is sort of silly: if your current directory has the files duchess

and queen in it and you type ls duchess queen, the system will simply print those file-

names. But sometimes you want to verify the existence of a certain group of files without

having to know all of their names; for example, if you use a text editor, you might want

to see which files in your current directory have names that end in .txt. Filenames are so

important in UNIX that the shell provides a built-in way to specify the pattern of a set of

filenames without having to know all of the names themselves. You can use special char-

acters, called wildcards, in filenames to turn them into patterns. The following provides

the list of the basic wildcards.

Wildcard Matches

? Any single character

* Any string of characters

[set] Any character in set

[!set] Any character not in set

Example:

$ls

bob darlene dave ed frank fred program.log program.o program.c

$ls program.?

program.o program.c

$ls fr*

frank fred

$ls *ed

ed fred

$ls *r*

darlene frank fred

$ls g*

ls: cannot access g*: No such file or directory

LAB NO: 1

8

The remaining wildcard is the set construct. A set is a list of characters (e.g., abc), an

inclusive range (e.g., a-z), or some combination of the two. If you want the dash character

to be part of a list, just list it first or last.

Using the set construct wildcards are as follows:

Expression Matches

[abc] a, b, or c

[.,;] Period, comma, or semicolon

[-_] Dash or underscore

[a-c] a, b, or c

[a-z] All lowercase letters

[!0-9] All non-digits

[0-9!] All digits and exclamation point

[a-zA-Z] All lower- and uppercase letters

[a-zA-Z0-9_-] All letters, all digits, underscore, and dash

In the original wildcard example, program.[co] and program.[a-z] both match program.c

and program.o, but not program.log. An exclamation point after the left bracket lets you

"negate" a set. For example, [!.;] matches any character except period and semicolon; [!a-

zA-Z] matches any character that isn't a letter. To match “!” itself, place it after the first

character in the set, or precede it with a backslash, as in [\!].

The range notation is handy, but you shouldn't make too many assumptions about what

characters are included in a range. It's safe to use a range for uppercase letters, lowercase

letters, digits, or any subranges thereof (e.g., [f-q], [2-6]). Don't use ranges on punctuation

characters or mixed-case letters: e.g., [a-Z] and [A-z] should not be trusted to include all

of the letters and nothing more.

The process of matching expressions containing wildcards to filenames is called wildcard

expansion or globbing. This is just one of several steps the shell takes when reading and

processing a command line; another that we have already seen is tilde expansion, where

tildes are replaced with home directories where applicable.

However, it's important to be aware that the commands that you run only see the results

of wildcard expansion. That is, they just see a list of arguments, and they have no

LAB NO: 1

9

knowledge of how those arguments came into being. For example, if you type ls fr* and

your files are as on the previous page, then the shell expands the command line to ls fred

frank and invokes the command ls with arguments fred and frank. If you type ls g*, then

(because there is no match) ls will be given the literal string g* and will complain with

the error message, g*: No such file or directory. This is different from the C shell's wild-

card mechanism, which prints an error message and doesn't execute the command at all.

The wildcard examples that we have seen so far are actually part of a more general con-

cept called pathname expansion. Just as it is possible to use wildcards in the current di-

rectory, they can also be used as part of a pathname. For example, if you wanted to list

all of the files in the directories /usr and /usr2, you could type ls /usr*. If you were only

interested in the files beginning with the letters b and e in these directories, you could

type ls /usr*/[be]* to list them.

4. Working With Files and Directories

These commands can be used to: find out information about files, display files, and

manipulate them in other ways (copy, move, delete). The various commands used for

working with files and directories are:

a. touch: changes the file timestamps, if the file does not exists then this command

creates an empty file. Example: touch abc xyz mno creates three empty files in the

current directory

b. file: Find out what kind of file it is. For example, file /bin/ls tells us that it is a

UNIX executable file.

c. cat: Display the contents of a text file on the screen. For example: cat file.txt

would displays the file content.

d. head: Display the first few lines of a text file. Example: head /etc/services

e. tail: Display the last few lines of a text file. Example: tail /etc/services. tail -f

displays the last few lines of a text file.

f. cp: Copies a file from one location to another. Example: cp mp3files.txt /tmp (cop-

ies the mp3files.txt file to the /tmp directory)

g. mv: Moves a file to a new location, or renames it. For example: mv mp3files.txt

/tmp (copy the file to /tmp, and delete it from the original location)

h. rm: Delete a file. Example: rm /tmp/mp3files.txt

LAB NO: 1

10

i. mkdir: Make Directory. Example: mkdir /tmp/myfiles/ creates a folder named

myfiles in /tmp folder.

j. rmdir: Remove Directory. rmdir will only remove directory when it is empty. Use

of rm -R will remove the directory as well as any files and subdirectories as long

as they are not in use. Be careful though, make sure you specify the correct direc-

tory or you can remove a lot of stuff quickly.

Example: rmdir /tmp/myfiles/

5. Commands used for Finding Things

The following commands are used to find files. ls is good for finding files if you

already know approximately where they are, but sometimes you need more powerful

tools such as these:

a. which: Shows the full path of shell commands found in your path. For example,

if you want to know exactly where the grep command is located on the file system,

you can type which grep. The output should be something like: /bin/grep

b. whereis: Locates the program, source code, and manual page for a command (if

all information is available). For example, to find out where ls and its man page

are, type: whereis ls. The output will look something like: ls: /bin/ls

/usr/share/man/man1/ls.1.gz

c. locate: A quick way to search for files anywhere on the file system. For example,

you can find all files and directories that contain the name mozilla by typing: lo-

cate mozilla

d. find: A very powerful command, but sometimes tricky to use. It can be used to

search for files matching certain patterns, as well as many other types of searches.

A simple example is: find . -name *.sh. This example starts searching in the cur-

rent directory and all subdirectories, looking for files with sh at the end of their

names.

6. Piping and Re-Direction

Before we move on to learning even more commands, let's side-track to the topics of

piping and re-direction. The basic UNIX philosophy, therefore by extension the

UNIX philosophy, is to have many small programs and utilities that do a particular

job very well. It is the responsibility of the programmer or user to combine these

utilities to make more useful command sequences.

LAB NO: 1

11

6.1 Piping Commands Together

The pipe character, | is used to chain two or more commands together. The output of

the first command is piped into the next program, and if there is a second pipe, the

output is sent to the third program, etc. For example: ls -la /usr/bin | less lists the files

one screen at a time

6.2 Redirecting Program Output to Files

There are times when it is useful to save the output of a command to a file, instead of

displaying it to the screen. For example, if we want to create a file that lists all of the

MP3 files in a directory, we can do something like this, using the > redirection char-

acter. Example: ls -l /home/vic/MP3/*.mp3 > mp3files.txt creates a new file and cop-

ies the output of the listing. A similar command can be written so that instead of

creating a new file called mp3files.txt, we can append to the end of the original file:ls

-l /home/vic/extraMP3s/*.mp3 >> mp3files.txt

7. Shortcuts

a. ctrl+c Halts the current command

b. ctrl+z Stops the current command,

c. ctrl+d Logout the current session, similar to exit

d. ctrl+w Erases one word in the current line

e. ctrl+u Erases the whole line

f. !! Repeats the last command

g. exit Logout the current session

Lab Exercises

1. Execute and write output of all the commands explained so far in this manual.

2. Explore the following commands along with their various options. (Some of the op-

tions are specified in the bracket)

a. cat (variation used to create a new file and append to existing file)

b. head and tail (-n, -c)

c. cp (-n, -i, -f)

d. mv (-f, -i) [try (i) mv dir1 dir2 (ii) mv file1 file2 file3 ... directory]

e. rm (-r, -i, -f)

f. rmdir (-r, -f)

g. find (-name, -type)

LAB NO: 1

12

3. List all the file names satisfying following criteria

a. has the extension .txt.

b. containing atleast one digit.

c. having minimum length of 4.

d. does not contain any of the vowels as the start letter.

LAB NO: 2

13

LAB NO: 2 Date:

ADVANCED UNIX SHELL COMMANDS

Objectives:

1. To know the UNIX shell, special characters and commands.

2. To describe Unix commands.

1. Commands used to extract, sort, filter and process data

a. grep

grep is a command-line utility for searching plain-text data sets for lines matching a

regular expression. grep was originally developed for the UNIX operating system, but

is available today for all UNIX-like systems. Its name comes from the ed command

g/re/p (globally search a regular expression and print), which has the same effect:

doing a global search with the regular expression and printing all matching lines. Use

grep –help to know the possible arguments for grep.

grep <someText> <fileName> #search, case sensitive, for <someText> in <file-

name>, use -i for case insensitive search

grep -r <text> <folderName>/ # search for file names with occurrence of the text

With regular expressions:

grep -E ^<text> <fileName> #search start of lines with the word text

grep -E <0-4> <fileName> #shows lines containing numbers 0-4

grep –E <a-zA-Z> <fileName> # retrieve all lines with alphabetical letters.

Usage

Grep <word> <filename>

grep <word> file1 file2 file3

grep < word1> <word2> filename

cat <otherfile> | grep <word>

command | grep <something>

grep --color < word> <filename>

grep text * # * stands for all files in current directory

Examples:

$ cat fruitlist.txt

apple

LAB NO: 2

14

apples

pineapple

fruit-apple

banana

pear

peach

orange

$ grep apple fruitlist.txt

apple

apples

pineapple

fruit-apple

$ grep -x apple fruitlist.txt # match whole line

apple

$ grep ^p fruitlist.txt

pineapple

pear

peach

$ grep -v apple fruitlist.txt #print unmatched lines

banana

pear

peach

orange

b. sort

sort is a program that prints the lines of its input or concatenation of all files listed in

its argument list in sorted order. Sorting is done based on one or more sort keys ex-

tracted from each line of input. By default, the entire input is taken as sort key. Blank

space is the default field separator. Note: Sort doesn’t modify the input file content.

sort <any number of filenames> #sort the content of file(s)

sort <fileName> #sort alphabetically

sort -o <file> <outputFile> #write result to a file

LAB NO: 2

15

sort -r <fileName> #sort in reverse order

sort -n <fileName> #sort numbers

c. wc (word count)

This shell command can be used to print the number of lines words in the input file/s.

$wc <fileName> #Number of lines, number of words, byte size of <fileName>.

Other arguments includes: -l (lines), -w (words), -c (byte size), -m

$ wc * : counts for all files in the current directory.

d. cut

cut is a data filter: it extracts columns from tabular data. If you supply the numbers of

columns you want to extract from the input, cut prints only those columns on the

standard output. Columns can be character positions or—relevant in this example—

fields that are separated by TAB characters (default delimiter) or other delimiters.

Examples

ls –l | cut –d “-“ -f 2 #-d specifies the delimiter and default delimiter is tab. The

permission for the group for the files can be obtained using this statement

cut –c 1-3 record.txt # -c specifies characters to be extracted

cut -c1,4,7 record.txt #characters 1, 4, and 7

cut -c1-3,8 record.txt #characters 1 thru 3, and 8

cut -c3- record.txt #characters 3 thru last

cut –f 1,4,7 record.txt #tab-separated fields 1, 4, and 7 #-f specifies fields to be

extracted.

e.sed (stream editor)

sed performs basic text transformations on an input stream (a file or input from a pipe-

line) in a single pass through the stream, so it is very efficient. However, it is sed's

ability to filter text in a pipeline which particularly distinguishes it from other types of

editor.

sed basics

sed can be used at the command-line, or within a shell script, to edit a file non-inter-

actively. Perhaps the most useful feature is to do a 'search-and-replace' for one string

to another. You can embed your sed commands into the command-line that invokes

sed using the '-e' option, or put them in a separate file e.g. 'sed.in' and invoke sed using

LAB NO: 2

16

the '-f sed.in' option. This latter option is most used if the sed commands are complex

and involve lots of regexps!

For instance: sed -e 's/input/output/' my_file

will echo every line from my_file to standard output, changing the first occurrence of

'input' on each line into 'output'. sed is line-oriented, so if you wish to change every

occurrence on each line, then you need to make it a 'greedy' search & replace like so:

sed -e 's/input/output/g' my_file # g stands for global

By default the output is written to stdout. You may redirect this to a new file, or if you

want to edit the existing file in place you should use the -i flag:

sed -e 's/input/output/' my_file > new_file

sed -i -e 's/input/output/' my_file

sed and regexps

What if one of the characters you wish to use in the search command is a special sym-

bol, like / (e.g. in a filename) or * etc? Then you must escape the symbol just as for

grep (and awk). Say you want to edit a shell scripts to refer to /usr/local/bin and not

/bin any more, then you could do this

sed -e 's/\/bin/\/usr\/local\/bin/' my_script > new_script

What if you want to use a wildcard as part of your search – how do you write the output

string? You need to use the special symbol '&' which corresponds to the pattern found.

So say you want to take every line that starts with a number in your file and surround

that number by parentheses:

sed -e 's/[0-9]*/(&)/' my_file

where [0-9] is a regexp range for all single digit numbers, and the '*' is a repeat

count, means any number of digits.

Other sed commands

The general form is sed -e '/pattern/ command' my_file, where 'pattern' is a regexp

and 'command' can be one of 's' = search & replace, or 'p' = print, or 'd' =delete, or

'i'=insert, or 'a'=append, etc. Note that the default action is to print all lines that do

not match anyway, so if you want to suppress this you need to invoke sed with the '-

n' flag and then you can use the 'p' command to control what is printed. So if you

want to do a listing of all the subdirectories you could use below statement, as ls –l

includes “d” at the start while listing the subdirectories.

ls -l | sed -n -e '/^d/ p'

Below statement, deletes all lines that start with the comment symbol '#' in my_file.

sed -e '/^#/ d' my_file

LAB NO: 2

17

To insert a new line after a matching pattern is found the option “a” is used

sed –i ‘/word/a “xyz”’ filename

You can also use the range form

sed -e '1,100 command' my_file

to execute 'command' on lines 1,100. You can also use the special line number '$' to

mean 'end of file'. For example below statement deletes all but the first 10 lines of a

file.

sed -e '11,$ d' my_file

f. tr (translate)

The tr filter is used to translate one set of characters from the standard inputs to an-

other.

Examples:

$tr “[a-z]” “[A-Z]” < filename #maps all lowercase characters in filename to up-

percase. Content of the file is not changed.

tr 'abcd' 'jkmn' #maps all characters a to j, b to k, c to m, and d to n.

The character set may be abbreviated by using character ranges. The previous ex-

ample could be written: tr 'a-d' 'jkmn'

The s flag (suppress) causes tr to compress sequences of identical adjacent charac-

ters in its output to a single token. For example,

tr -s '\n' #replaces sequences of one or more newline characters with a single

newline.

The d flag causes tr to delete all tokens of the specified set of characters from its

input. The tr -d '\r' statement removes carriage return characters.

The c flag indicates the complement of the first set of characters. The invocation

tr -cd '[:alnum:]' therefore removes all non-alphanumeric characters.

2. Process management commands

a. ps

The ps command (short for "process status") displays the currently-running processes.

ps command displays process id (PID), TTY (Terminal associated with the process),

time The amount of CPU time used by the process and command name (CMD). For

example:

$ ps

PID TTY TIME CMD

LAB NO: 2

18

7431 pts/0 00:00:00 su

7434 pts/0 00:00:00 bash

18585 pts/0 00:00:00 ps

b. kill

kill is a command that is used in several popular operating systems to send signals to

running processes in order to request the termination of the process. The signals in

which users are generally most interested are SIGTERM and SIGKILL. The SIG-

TERM signal is sent to a process to request its termination. Unlike the SIGKILL sig-

nal, it can be caught and interpreted or ignored by the process. This allows the process

to perform nice termination releasing resources and saving state if appropriate. The

SIGKILL signal is sent to a process to cause it to terminate immediately (kill). This

signal cannot be caught or ignored, and the receiving process cannot perform any

clean-up upon receiving this signal.

Examples:

A process can be sent a SIGTERM signal in four ways (the process ID is '1234' in this

case):

kill 1234

kill -s TERM 1234

kill -TERM 1234

kill -15 1234

The process can be sent a SIGKILL signal in three ways:

kill -s KILL 1234

kill -KILL 1234

kill -9 1234

3. File permission commands

a. chmod (Change mode)

The chmod numerical format accepts up to four octal digits. The three rightmost digits

refer to permissions for the file owner, the group, and other users.

Numerical permissions

Permission rwx

7 read, write and execute rwx

6 read and write rw-

5 read and execute r-x

LAB NO: 2

19

4 read only r--

3 write and execute -wx

2 write only -w-

1 execute only --x

0 none ---

The chmod command also accepts a finer-grained symbolic notation, which allows

modifying specific modes while leaving other modes untouched. The symbolic mode

is composed of three components, which are combined to form a single string of text:

$ chmod [references][operator][modes] file ...

The references (or classes) are used to distinguish the users to whom the permissions

apply. If no references are specified it defaults to “all” but modifies only the permis-

sions allowed by the umask. The references are represented by one or more of the

following letters:

Reference Class Description

u user the owner of the file

g group users who are members of the file's group

o others users who are neither the owner of the file nor

 members of the file's group

a all all three of the above, same as ugo

The chmod program uses an operator to specify how the modes of a file should be

adjusted. The following operators are accepted:

Operator Description

+ adds the specified modes to the specified classes

- removes the specified modes from the specified classes

= the modes specified are to be made the exact modes for the specified clas-

ses

The modes indicate which permissions are to be granted or removed from the spec-

ified classes. There are three basic modes which correspond to the basic permis-

sions:

LAB NO: 2

20

Mode Name Description

r read read a file or list a directory's contents

w write write to a file or directory

x execute execute a file or recurse a directory tree

Command Explanation

chmod a+r Comments.txt read is added for all classes (i.e. User, Group

and Others)

chmod +r Comments.txt omitting the class defaults to all classes, but

the resultant permissions are dependent on

umask.

chmod a-x Comments.txt execute permission is removed for all clas-

ses.

chmod a+rx viewer.sh add read and execute for all classes.

chmod u=rw,g=r,o= Plan.txt user(i.e. owner) can read and write, group

can read, others cannot access.

chmod -R u+w,go-w docs add write permissions to the directory docs

and all its contents (i.e. recursively) for user

and deny write access for everybody else.

chmod ug=rw groupAgreements.txt user and group members can read and write

(update the file).

chmod 664 global.txt sets read and write and no execution access

for the user and group, and read, no write,

no execute for all others.

LAB NO: 2

21

chmod 0744 myCV.txt equivalent to u=rwx (400+200+100),go=r

(40+ 4). The 0 specifies no special modes.

4. Other useful commands

a. echo

This is one of the most commonly and widely used built-in command, that typically

used in scripting language and batch files to display a line of text/string on standard

output or a file. This command writes its arguments to standard output. Example: echo

this is OS lab manual, prints the input string on the terminal. It is not necessary to

surround the strings with quotes, as it does not affect what is written on the screen. If

quotes (either single or double) are used, they are not repeated on the screen.

b. bc (Basic Calculator)

After this command bc is started and it waits for your commands, example:

$bc (hit enter key)

5 + 2

7 #7 is response of bc i.e. addition of 5 + 2 you can even try

5 / 2

2 # to perform floating point operations use bc -l

5 > 2

1. #0 (Zero) is response of bc, How? Here it compare 5 with 2 as, Is 5 is

greater than 2, (If I ask same-question to you, your answer will be YES)

In UNIX (bc) gives this 'YES' answer by showing 0 (Zero) value.

2.

The vi editor

The vi editor is a visual editor used to create and edit text, files, documents and programs.

It displays the content of files on the screen and allows a user to add, delete or change

part of text. There are three modes available in the vi editor, they are

i. Command mode

ii. Input (or) insert mode.

Starting vi :

The vi editor is invoked by giving the following commands in UNIX prompt.

Syntax : $vi <filename> (or) $vi

http://www.linfo.org/argument.html
http://www.linfo.org/standard_output.html

LAB NO: 2

22

This command would open a display screen with 25 lines and with tilt (~) symbol at the

start of each line. The first syntax would save the file in the filename mentioned and for

the next the filename must be mentioned at the end.

Options :

1.vi +n <filename> - this would point at the nth line (cursor pos).

2.vi –n <filename> - This command is to make the file to read only to change from one

mode to another press escape key.

Saving and Quitting from vi

To move editor from command node to edit mode, you have to press the <ESC> key.

<ESC> w Command To save the given text present in the file.

<ESC> q! Command To quit the given text without saving.

<ESC> wq Command This command quits the vi editor after saving the text in the

mentioned file.

<ESC> x Command This command is same as “wq” command it saves and quit.

<ESC> q Command This command would quit the window but it would ask for

again to save the file.

Lab Exercises

1. Execute all the commands explained in this section and write the output.

2. Write grep commands to do the following activities:

• To select the lines from a file that have exactly two characters.

• To select the lines from a file that start with the upper case letter.

• To select the lines from a file that end with a period.

• To select the lines in a file that has one or more blank spaces.

• To select the lines in a file and direct them to another file which has digits as

one of the characters in that line.

3. Create file studentInformation.txt using vi editor which contains details in the follow-

ing format.

RegistrationNo:Name:Department:Branch:Section:Sub1:Sub2:Sub3

1234:XYZ:ICT:CCE:A:80:60:70 … (add atleast 10 rows)

i) Display the number students(only count) belonging to ICT department.

ii) Replace all occurrences of IT branch with “Information Technology” and save

the output to ITStudents.txt

iii) Display the average marks of student with the given registration number

“1234” (or any specific existing number).

LAB NO: 2

23

iv) Display the title row in uppercase. The remaining lines should be unchanged.

Example:

REGISTRATIONNO:NAME:DEPARTMENT:BRANCH:SECTION:…

1234:XYZ:ICT:CCE:A:10:30:50 … (Hint: use ; for running multiple commands)

3. List all the files containing “MIT” in the current folder. Also display the lines con-

taining MIT being replaced with Manipal Institute of Technology. (Hint: use grep,

cut & sed)

4. Write a shell command to display the number of lines, characters, words of files con-

taining a digit in its name.

5. Run wc command in the background many times using wc &. Kill all the processes

named wc.

Additional Exercises

1. Write a sed command that deletes the character before the last character in each line

in a file.

2. Write a shell command to count the number lines containing digits present in a file.

LAB NO: 3

24

LAB NO: 3 Date:

UNIX SHELL PROGRAMMING (SHELL SCRIPTING)

Objectives:

1. To recall the Unix shell programming.

2. To identify System variables.

1. The UNIX shell programming

Shell programming is a group of commands grouped together under single filename.

After logging onto the system a prompt for input appears which is generated by a

Command String Interpreter program called the shell. The shell interprets the input,

takes appropriate action, and finally prompts for more input. The shell can be used

either interactively - enter commands at the command prompt, or as an interpreter to

execute a shell script. Shell scripts are dynamically interpreted, NOT compiled.

2. shbang line, comments, wildcards and keywords

The shbang line "shbang" line is the very first line of the script and lets the kernel know

what shell will be interpreting the lines in the script. The shbang line consists of a #!,

followed by the full pathname to the shell, and can be followed by options to control

the behavior of the shell.

EXAMPLE #!/bin/sh

Comments Comments are descriptive material preceded by a # sign. They are in ef-

fect until the end of a line and can be started anywhere on the line.

EXAMPLE # this text is not interpreted by the shell

Wildcards There are some characters that are evaluated by the shell in a special way.

They are called shell meta characters or "wildcards". These characters are neither

numbers nor letters. For example, the *, ?, and [] are used for filename expansion.

LAB NO: 3

25

The <, >, 2>, >>, and | symbols are used for standard I/O redirection and pipes. To

prevent these characters from being interpreted by the shell they must be quoted.

EXAMPLE

Filename expansion:

rm *; ls ??; cat file[1-3];

Quotes protect metacharacters:

echo "How are you?"

Shell keywords :

Some of the shell keywords are echo, read, if fi, else, case, esac, for, while, do, done,

until, set, unset, readonly, shift, export, break, continue, exit, return, trap , wait, eval

,exec, ulimit , umask.

3. shell variables, expressions and statements

Shell variables change during the execution of the program.

Variable naming rules:

➢ A variable name is any combination of alphabets, digits and an underscore („-„);

➢ No commas or blanks are allowed within a variable name.

➢ The first character of a variable name must either be an alphabet or an underscore.

➢ Variables names should be of any reasonable length.

➢ Variables name are case sensitive. That is, Name, NAME, name, Name, are all

different variables.

Local variables are in scope for the current shell. When a script ends, they are no longer

available; i.e., they go out of scope. Local variables are set and assigned values.

EXAMPLE

variable_name=value

name="John Doe"

x=5

LAB NO: 3

26

Global variables are called environment variables. They are set for the currently running

shell and any process spawned from that shell. They go out of scope when the script ends.

EXAMPLE

VARIABLE_NAME=value

export VARIABLE_NAME

PATH=/bin:/usr/bin:.

export PATH

Extracting values from variables: To extract the value from variables, a dollar sign is

used.

EXAMPLE [here, echo command is used display the variable value]

echo $variable_name

echo $name

echo $PATH

4. Shell input and output

Input:

To get the input from the user read is used.

Syntax : read x y #no need of commas between variables

The read command takes a line of input from the user and assigns it to a variable(s) on

the right-hand side. The read command can accept multiple variable names. Each variable

will be assigned a word. No need to declare the variables to be read from user

Output :

echo can be used to display the results. Wildcards must be escaped with either a

backslash or matching quotes.

Syntax :

echo “Enter the value of b” (or) echo Value of b is $b(for variable).

5. Basic Arithmetic operations

The shell does not support arithmetic operations directly (ex: a=b+c). UNIX/UNIX com-

mands must be used to perform calculations.

LAB NO: 3

27

Command Syntax Example

expr

expr expression

operators: + , - , /, %,=,==,!=

a=$(expr $a + 1)

a=`expr $a + 1`

space should not be present be-

tween = and expr. Space should

be present between operator and

operands. To access values $ has

to be used for operands. Performs

only integer arithmetic opera-

tions.

test []

[condition/expression]

Note one space should be present

after [and before]. Also operand

and operator must be separated

by a space.

operators:

Integers: -eq, -ne, -gt,-lt,-ge, -le,

==, !=

Boolean: !, -o(or), -a(and)

String: =, !=,-z(zero length), -

n(non-zero length), [$str] (true if

$str is not empty)

File: -f (ordinary file), -d

(directory), -r (readable), -w, -x, -

s (size is zero), -e (exists)

echo “Enter Two Values”

read a b

result=$[a == b]

echo "Check for Equality $re-

sult”

O/P: Enter Two Values

4 4

Check for Equality 1

test works in combination with

control structures refer section 6.

LAB NO: 3

28

test (())

Performs integer arithmetic. Here

spacing does not matter also we

need not include $ for the

variables. Useful in performing

increment or detriment

operations.

echo "Enter the two values"

read a b

echo "enter operator(+, -, /,

% *)"

read op

((a++))

result=$((a $op b))

echo "Result of performing $a

$op $b is $result”
O/P:Enter the two values

4 6
enter operator(+, -, /, % *)

*

Result of performing 5 * 6 is 30

bc

refer section 4 of Lab 2. bc can be

used to perform floating point

operations.

echo "Enter the two values"

read a b

echo "Enter operator(+, -, /, %

*)"

read op

result=`bc -l <<<$a\$op$b`

or use result=`echo “$a $op

$b” | bc -l`

echo " Result of performing $a

$op $b is $result”

O/P:Enter the two values

4 5

Enter operator(+, -, /, % *)

*

Result of performing 4 * 5 is 20

6. Control statements

The shell control structure is similar to C syntax, but instead of brackets {} statements

like then- fi or do-done are used. The then, do has to be used in next line, otherwise ; has

to be used to mark the next line.

LAB NO: 3

29

Control

Structure

Syntax

Example

if

if condition ; then

command(s)

fi

OR

if condition

then

command(s)

fi

read character

if ["$character" = "2"]; then

echo " You entered two."

fi

O/P: 2

You entered two

if else

if condition ; then

command(s)

else

command(s)

fi

read fileName

if [-e $fileName]; then

echo “ File $fileName exists"

else

echo “ File $fileName does not exist"

fi

O/P: LAB3.sh

File LAB3.sh exists

else if

ladder

if condition ; then

command(s)

elif condition ; then

command(s)

fi

read a b

if [$a == $b]; then

echo "$a is equal to $b"

elif [$a -gt $b]; then

echo "$a is greater than $b"

elif ((a<b)) ; then

echo "$a is less than $b"

else

echo "None of the condition met"

fi

O/P: 4 5

4 is less than 5

LAB NO: 3

30

switch case

case word in

pattern1) command(s) ;;

pattern2) command(s) ;;

...

*) command(s) ;;

esac

echo -n "Enter a number 1 or string

Hello or character A"

read character

case $character in

1) echo "You entered one.";;

"Hello") echo -n “You entered two.”

echo “Just to show multiple com-

mands”;;

'A') echo "You entered three.";;

*) echo "You did not enter a number"

echo "between 1 and 3."

esac

O/P: Enter a number 1 or string Hello or

character A: Hello

You entered two. Just to show multiple

commands

for

for ((initialization;

condition; expo)); do

command(s)

done

read n

for ((i=1; i<=n; i++));do

echo -n $i

done

O/P:

5

12345

LAB NO: 3

31

for each

for variable in list

do

command(s)

done

IFS=$’\n' #field separator is \n instead

of default space

x=`ls -l | cut -c 1`

for i in $x;do

if [$i = "d"] ; then

echo "This is the directory"

fi

done

O/P: $ls -l

-rw-r--r-- 1 … script.sh

-rw-r--r-- 1 … file2.txt

drwxr-xr-x 2 … test

$bash script.sh

This is the directory

while

while condition

do

command(s) to be executed

while the condition is true

done

read n

i=1;

while ((i <= n)); do

echo -n $i " "

((i++))

done

echo “"

O/P:

5

1 2 3 4 5

until

until condition

do

command(s) to be executed

until condition is true i.e

while the condition is false.

Done

read n

i=1

until ((i > n)); do

echo -n $i " "

((i++))

done

O/P:

5

1 2 3 4 5

LAB NO: 3

32

exit

exit num command may be

used to deliver an num exit

status to the shell (num

must be an integer in the 0 -

255 range).

echohi

echo "last error status $?"

exit $? #exit the script with las error sta-

tus

echo "HI" # never printed

O/P:

echohi: command not found

last error status 127

7. Execution of a shell script

Prepare the shell script using either text editor or vi. After preparing the script file in use sh

or bash command to execute a shell script. Example: $bash test.sh [Here the test.sh is

the file to be executed]. OR give executable permission to the script and run ./script-

Name. Example: $chmod +x test.sh

$./test.sh

Lab Exercises

1. Write a shell script to find whether a given file is the directory or regular file.

2. Write a shell script to list all files (only file names) containing the input pattern

(string) in the folder entered by the user.

3. Write a shell script to replace all files with .txt extension with .text in the current di-

rectory. This has to be done recursively i.e if the current folder contains a folder

“OS” with abc.txt then it has to be changed to abc.text (Hint: use find, mv)

4. Write a shell script to calculate the gross salary. GS=Basics + TA + 10% of Basics.

Floating point calculations has to be performed.

5. Write a program to copy all the files (having file extension input by the user) in the

current folder to the new folder input by the user. ex: user enter .text TEXT then all

files with .text should be moved to TEXT folder. This should be done only at single

level. i.e if the current folder contains a folder name ABC which has .txt files then

these files should not be copied to TEXT.

6. Write a shell script to modify all occurrences of “ex:” with “Example:” in all the files

present in current folder only if “ex:” occurs at the start of the line or after a period

LAB NO: 3

33

(.). Example: if a file contains a line: “ex: this is first occurrence so should be re-

placed” and “second ex: should not be replaced as it occurs in the middle of the sen-

tence.”

7. Write a shell script which deletes all the even numbered lines in a text file.

Additional Exercises

1. Write a shell script to check whether the user entered number is prime or not.

2. Write a shell script to find the factorial of number.

3. Write a shell script that, given a file name as the argument will write the even

numbered line to a file with name evenfile and odd numbered lines to a file called

oddfile.

LAB NO: 4

34

LAB NO: 4 Date:

ADVANCED SHELL SCRIPTING

Objectives:

1. To learn the command line arguments in shell scripting.

2. To know system variables.

3. To understand basics of arrays and functions.

1. Command Line arguments:

Command line arguments (also known as positional parameters) are the arguments spec-

ified at the command prompt with a command or script to be executed. The locations at

the command prompt of the arguments as well as the location of the command, or the

script itself, are stored in corresponding variables. These variables are special shell vari-

ables.

LAB NO: 4

35

Positional parameter Description

$0 The command or script name

$# Total number of arguments.

$1 to $9 Arguments 1 through 9

${10} and so on Arguments 10 and further

$* All the arguments

$$ PID of the running script

$@ Returns a sequence of strings (``$1'', ``$2’’ ... ``$n’’).

Same as $* when unquoted. $@ interprets each quoted ar-

gument as a separate argument.

for i in “$@“; do

 echo $i # loop $# times

done

for i in “$*";do

 echo $i # loop 1 times

done

EXAMPLE:

At the command line:

$scriptname arg1 arg2 arg3 ...

Inside script:

echo $1 $2 $3 ${10} #Positional parameters

echo $* #All the positional parameters

echo $# #The number of positional parameters

shift

2. System variables

When you log in on UNIX, your current shell (login shell) sets a unique working envi-

ronment for you which is maintained until you log out. You can see system variables by

giving command like $ set, few of the important system variables are

LAB NO: 4

36

System Variable value Meaning

BASH /bin/bash Our shell name

BASH_VERSION 1.14.7(1) Our shell version name

COLUMNS 80 No. of columns for our screen

HOME /home/vivek Our home directory

LINES 25 No. of columns for our screen

LOGNAME students Our logging name

OSTYPE UNIX Our os type

PATH /usr/bin:/sbin:/bin:/usr/sbin Our path settings

PS1 [\u@\h \W]\$ Our prompt settings

PWD /home/students/Common Our current working directory

SHELL /bin/bash Our shell name

USER vivek User name who is currently login to

this PC

NOTE that some of the above settings can be different in your PC. You can print any of

the above variables contain as follows

$ echo $USER

$ echo $HOME

[Caution: Do not modify System variable this can some time create problems.]

3. Arrays and Functions

3.1 Arrays: An array variable that can hold multiple values at the same time. Ar-

rays provide a method of grouping a set of variables. Instead of creating a new name

for each variable that is required, you can use a single array variable that stores all

the other variables.

Array Declaration

If you are using ksh shell then here is the syntax of array initialization:

set -A array_name value1 value2 ... valuen

LAB NO: 4

37

If you are using bash shell the here is the syntax of array initialization:

array_name=(value1 ... valuen) or

declare -a array_name

Accessing Array values

After you have set any array variable, you access it as follows:

${array_name[index]}

Here array_name is the name of the array, and index is the index of the value to be

accessed.

Example:

read -a inputArrayOfNumbers # input separated by spaces and not by carriage re-

turn

echo -n "Entered input is…"

for i in ${inputArrayOfNumbers[@]} ; do

echo -n $i " "

done

O/P:

5 4 45 3

Entered input is…5 4 45 3

Example 2:

declare –a arrayOfNumber

j=0

for i in $@

do

arrayOfNumber[j]=$i

((j++))

done

echo “${arrayOfNumber[@]}”

3.2 Functions:

Functions enable you to break down the overall functionality of a script into smaller,

logical subsections, which can then be called upon to perform their individual task

when it is needed. Using functions to perform repetitive tasks is an excellent way to

create code reuse.

LAB NO: 4

38

Function Definition

To define a function, simply use the following syntax:

function_name () { # can also use function function_name

list of command(s)

to use parameters passed to the function use $1, $2…

}

Calling a Function

To call the function in the script use the following syntax:

function_name Arg1 arg2… # without spaces

Example :

function_add() {

a=$1

b=$2

c=`echo $a+$b | bc`

echo $c

}

function_add 3 5

Returning values from function

Exit status can be returned from the function using return statements in the function

definition.

Example:

function_name () {

list of command(s)

retval=0

return “$retval"

In the main routine the values can be retrieved using $?.

Example:

echo The previous function has a return value of $?

retval=$? # to get the exit status of the function.

Variables can be defined outside the scope of the any function, so that they can be

shared among the functions and main routine. To return the string echo can be used

in the function definition and use retval=$(function_name) in the main routine.

LAB NO: 4

39

Arrays as parameter to function

An array can be passed as a parameter to the function as normal variable, while in

the definition it can be accessed using $@.

Example:

myFunction() {

param1=("${!1}")

param2=("${!2}")

for i in ${param1[@]}; do

for j in ${param2[@]}; do

if ["${i}" == "${j}"]; then

echo ${i}

echo ${j}

fi

done

done

}

a=(foo bar baz)

b=(foo bar qux)

myFunction a[@] b[@] # would display foo foo bar bar.

Lab Exercises

1. Write a shell script to make a duplicate copy of a specified file through command line.

2. Write a shell script to remove all files that are passed as command line arguments

interactively.

3. Write a program to sort the strings that are passed as a command line arguments. (ex:

./script.sh “OS Lab” “Quoted strings” “Command Line” “Sort It”. The output

should be “Command Line” “OS Lab” “Quoted strings” “Sort It”. (make use of

usrdefined sort function)

4. Implement wordcount script that takes -linecount, -wordcount, -charcount options

and performs accordingly, on the input file that is passed as command line argument

(use case statement)

5. Write a menu driven shell script to read list of patterns as command line arguments

and perform following operations.

a. Search the patterns in the given input file. Display all lines containing the pat-

ten in the given input file.

LAB NO: 4

40

b. Delete all occurances of the pattern in the given input file.

c. Exit from the shell script.

Additional Exercises

1. Write a shell script to input a file and display permissions of the owner group and

others.

2. Write a shell script to display all files that are created between the input years

range.(ex with 2014-2015)

3. Write a shell script that accepts a file name starting and ending line numbers as argu-

ments and displays all the lines between the given line numbers.

LAB NO: 5

41

LAB NO: 5 Date:

SYSTEM CALLS FOR PROCESS CONTROL

Objectives:

1. To implement the C program on UNIX platform.

2. To demonstrate the uses of system calls in C programming.

1. Executing a C program on UNIX platform

Compile/Link a Simple C Program - hello.c

Below is the Hello-world C program hello.c:

// hello.c

#include <stdio.h>

int main() {

printf("Hello, world!\n");

return 0;

}

To compile the hello.c:

> gcc hello.c // Compile and link source file hello.c into executable a.out

The default output executable is called "a.out".

To run the program:

$./a.out

In Bash or Bourne shell, the default PATH does not include the current working di-

rectory. Hence, you may need to include the current path (./) in the command. (Win-

dows include the current directory in the PATH automatically; whereas UNIXes do

not - you need to include the current directory explicitly in the PATH.)

To specify the output filename, use -o option:

> gcc -o hello hello.c // Compile and link source file hello.c into execut-

able hello

$./hello // Execute hello specifying the current path (./)

LAB NO: 5

42

2. Use of System Calls in C programming

The main system calls that will be needed for this lab are:

 fork()

 execl(), execlp(), execv(), execvp()

 wait()

 getpid(), getppid()

 getpgrp()

fork():

#include <sys/types.h>

#include <unistd.h>

pid_t fork(void);

The fork system call does not take any argument. The process that invokes

the fork() is known as the parent and the new process is called the child. If

the fork system call fails, it will return a -1. If the fork system call is successful, the

process ID of the child process is returned in the parent process and a 0 is returned in

the child process. When a fork() system call is made, the operating system generates

a copy of the parent process which becomes the child process. Both parent and child

resume execution of the instruction after the fork statement. vfork() is a variant of

fork. It creates the child process and blocks the parent, also both parent and child

share the same address space. Refer the manual pages for fork and vfork.

The operating system will pass to the child process most of the parent's process infor-

mation. However, some information is unique to the child process:

• The child has its own process ID (PID)

• The child will have a different PPID than its parent

• System imposed process limits are reset to zero

• All recorded locks on files are reset

• The action to be taken when receiving signals is different

http://www.cs.uregina.ca/Links/class-info/330/Fork/fork.html%23fork
http://www.cs.uregina.ca/Links/class-info/330/Fork/fork.html%23exec
http://www.cs.uregina.ca/Links/class-info/330/Fork/fork.html%23wait
http://www.cs.uregina.ca/Links/class-info/330/Fork/fork.html%23getpid
http://www.cs.uregina.ca/Links/class-info/330/Fork/fork.html%23getpgrp

LAB NO: 5

43

The following is a simple example of fork()

#include <stdio.h>

#include <sys/types.h>

#include <unistd.h>

int main(void){

printf("Hello \n");

fork();

printf("bye\n");

return 0;

}

Hello is printed once by parent process. bye is printed twice, once by the parent and

once by the child. If the fork system call is successful a child process continues exe-

cution at the point where it was called by the parent process.

A summary of fork() return values:

 fork_return > 0: this is the parent

 fork_return == 0: this is the child

 fork_return == -1: fork() failed and there is no child. See code snippet below to

see how to check errors.

#include <stdio.h>

#include <sys/types.h>

#include <unistd.h>

#include <errno.h>

#include <string.h>

#define BUFLEN 10

int main(void)

{

int i;

char buffer[BUFLEN+1];

pid_t pid1;

pid1 = fork();

if (pid1 == 0)

{ strncpy(buffer, "CHILD\n", BUFLEN); /*in the child process*/

buffer[BUFLEN] = '\0';

}

LAB NO: 5

44

else if(fork_return > 0) // for parent process

{

strncpy(buffer, "PARENT\n", BUFLEN); /*in the parent process*/

buffer[BUFLEN] = '\0';

}

else if(fork_return == -1)

{

printf("ERROR:\n");

switch (errno)

{

case EAGAIN:

printf("Cannot fork process: System Process Limit Reached\n");

case ENOMEM:

printf("Cannot fork process: Out of memory\n");

}

return 1;

}

for (i=0; i<5; ++i) /*both processes do this*/

{

sleep(1); /*5 times each*/

write(1, buffer, strlen(buffer));

}

return 0;

}

A few notes on this program:

 The function call sleep will result in a process "sleeping" a specified number of

seconds. It can be used to prevent the process from running to completion within

one time slice.

 One process will always end before the other. If there is enough intervening time

before the second process ends, the system call will redisplay the prompt, produc-

ing the last line of output where the output from the child process is appended to

the end of the prompt (i.e.. %child)

LAB NO: 5

45

A few additional notes about fork():

 an orphan is a child process that continues to execute after its parent has finished

execution (or died)

 to avoid this problem, the parent should execute: wait(&return_code);

wait():

#include <sys/types.h>

#include <sys/wait.h>

int *status;

pid_t pidOfLastTerminatedChild= wait(&status);

A parent process usually needs to synchronize its actions by waiting until the child

process which has either stopped or terminated its actions. The wait() system call al-

lows the parent process to suspend its activities until one of these actions has occurred.

The wait() system call accepts a single argument, which is a pointer to an integer and

returns a value defined as type pid_t. If the calling process does not have any child

associated with it, wait will return immediately with a value of -1. If any child pro-

cesses are still active, the calling process will suspend its activity until a child process

terminates.

Example of wait():

int status;

pid_t fork_return;

fork_return = fork();

if (fork_return == 0) /* child process */ {

printf("\n I'm the child!");

exit(0); }

else { /* parent process */

wait(&status);

printf("\n I'm the parent!");

if (WIFEXITED(status)) // #include<sys/wait.h>

printf("\n Child returned: %d\n", WEXITSTATUS(status)); //#include<sys/wait.h>

}

A few notes on this program:

LAB NO: 5

46

 wait(&status) causes the parent to suspend until the child process finishes execu-

tion

 details of how the child stopped are returned via the status variable to the parent.

Several macros are available to interpret the information. Two useful ones are:

➢ WIFEXITED evaluates as true, or 0, if the process ended normally with an exit

or return call.

➢ WEXITSTATUS if a process ended normally you can get the value that was

returned with this macro.

exec*():

#include <unistd.h>

extern char **environ;

int execl(const char *path, const char *arg, ...);

int execlp(const char *file, const char *arg, ...);

int execle(const char *path, const char *arg , ..., char * const envp[]);

int execv(const char *path, char *const argv[]);

int execvp(const char *file, char *const argv[]);

"The exec family of functions replaces the current process image with a new process

image." (man pages)

Commonly a process generates a child process because it would like to transform the

child process by changing the program code the child process is executing. The text,

data and stack segment of the process are replaced and only the u (user) area of the

process remains the same. If successful, the exec system calls do not return to the

invoking program as the calling image is lost.

It is possible for a user at the command line to issue an exec system call, but it takes

over the current shell and terminates the shell.

% exec command [arguments]

LAB NO: 5

47

The versions of exec are:

• execl

• execv

• execle

• execve

• execlp

• execvp

The naming convention: exec*

 'l' indicates a list arrangement (a series of null terminated arguments)

 'v' indicate the array or vector arrangement (like the argv structure).

 'e' indicates the programmer will construct (in the array/vector format) and pass

their own environment variable list

 'p' indicates the current PATH string should be used when the system searches for

executable files.

NOTE:

 In the four system calls where the PATH string is not used (execl, execv, execle,

and execve) the path to the program to be executed must be fully specified.

Library

Call Name

Argument

Type

Pass Cur-

rent

Environ-

ment

Variables

Search

PATH auto-

matic?

execl list yes no

execv array yes no

execle list no no

execve array no no

execlp list yes yes

execvp array yes yes

LAB NO: 5

48

execlp

 this system call is used when the number of arguments to be passed to the program

to be executed is known in advance

execvp

 this system call is used when the numbers of arguments for the program to be

executed is dynamic

/* using execvp to execute the contents of argv */

#include <stdio.h>

#include <unistd.h>

#include <stdlib.h>

int main(int argc, char *argv[]){

execvp(argv[1], &argv[1]);

perror("exec failure");

exit(1);

}

Things to remember about exec*:

 this system call simply replaces the current process with a new program -- the pid

does not change.

 the exec() is issued by the calling process and what is exec'ed is referred to as the

new program -- not the new process since no new process is created.

 it is important to realize that control is not passed back to the calling process un-

less an error occurred with the exec() call.

 in the case of an error, the exec() returns a value back to the calling process

 if no error occurs, the calling process is lost.

A few more Examples of valid exec commands:

execl("/bin/date","",NULL); // since the second argument is the program name,

// it may be null

execl("/bin/date","date",NULL);

execlp("date","date", NULL); //uses the PATH to find date, try: %echo $PATH

LAB NO: 5

49

getpid():

#include <sys/types.h>

#include <unistd.h>

pid_t getpid(void);

pid_t getppid(void);

getpid() returns the process id of the current process. The process ID is a unique pos-

itive integer identification number given to the process when it begins executing.

getppid() returns the process id of the parent of the current process. The parent process

forked the current child process.

getpgrp():

#include <unistd.h>

pid_t getpgrp(void);

Every process belongs to a process group that is identified by an integer process group

ID value. When a process generates a child process, the operating system will auto-

matically create a process group.

The initial parent process is known as the process leader. getpgrp() will obtain the

process group id.

Lab Exercises

1. Write a C program to create a child process. Display different messages in parent

process and child process. Display PID and PPID of both parent and child process.

2. Write a C program to accept a set of strings as command line arguments. Sort the

strings and display them in a child process. Parent process should display the un-

sorted strings only after the child displays the sorted list.

3. Write a C program to read N strings. Create two child processes, each of this

should perform sorting using two different methods (bubble, selection, quicksort

etc). The parent should wait until one of the child process terminates.

Additional Exercises

1. Write a C program to simulate the unix commands: ls -l, cp and wc commands.

[NOTE: DON’T DIRECTLY USE THE BUILT-IN COMMANDS]

LAB NO: 6

50

LAB NO:6 Date:

PROCESS SCHEDULING

Objectives:

1. To implement process scheduling algorithms.

1. Basic Concepts :

CPU scheduling is the basis of multi programmed operating systems. By switching the

CPU among processes, the operating system can make the computer more productive. In

a single-processor system, only one process can run at a time; others(if any) must wait

until the CPU is free and can be rescheduled. The objective of multiprogramming is to

have some process running at all times, to maximize CPU utilization.

The idea is relatively simple. A process is executed until it must wait, typically for the

completion of some I/O request. In a simple computer system, the CPU then just sits idle.

All this waiting time is wasted; no useful work is accomplished. With multiprogramming,

we try to use this time productively. Several processes are kept in memory at one time.

When one process has to wait, the operating system takes the CPU away from that process

and gives the CPU to another process. This pattern continues. Every time one process has

to wait, another process can take over use of the CPU.

CPU Scheduler:

Whenever the CPU becomes idle, the operating system must select one of the processes

in the ready queue to be executed. The selection process is carried out by the CPU sched-

uler. The scheduler selects a process from the processes in memory that are ready to ex-

ecute and allocates the CPU to that process.

2. Problem Description and Algorithm :

2.1 Round Robin Scheduling (RR):

The round-robin (RR) scheduling algorithm is designed especially for timesharing sys-

tems. It is similar to (First Come First Serve) FCFS scheduling, but preemption is added

to enable the system to switch between processes. A small unit of time, called a time

quantum or time slice, is defined. A time quantum is generally from 10 to 100 millisec-

onds in length.

LAB NO: 6

51

To implement RR scheduling, we keep the ready queue as a FIFO queue o£ processes.

New processes are added to the tail of the ready queue. The CPU scheduler picks the first

process from the ready queue, sets a timer to interrupt after 1 time quantum, and dis-

patches the process.

One of two things will then happen. The process may have a CPU burst of less than 1

time quantum. In this case, the process itself will release the CPU voluntarily. The sched-

uler will then proceed to the next process in the ready queue. Otherwise, if the CPU burst

of the currently running process is longer than 1 time quantum, the timer will go off and

will cause an interrupt to the operating system. A context switch will be executed, and

the process will be put at the tail of the ready queue. The CPU scheduler will then select

the next process in the ready queue.

Example: Time quantum=3

Process Arrival Time Execution Time

P1 0 8

P2 5 4

P3 3 9

P4 7 16

P1 P3 P1 P2 P3 P4 P1 P2 P3 P4

0 3 6 9 12 15 18 20 21 24 37

Average waiting time: (12+12+12+14)/4 = 12.5.

2.2 Shortest Job First (SJF):

This algorithm associates with each process the length of the process’s next CPU burst.

When the CPU is available, it is assigned to the process that has the smallest next CPU

burst. If the next CPU bursts of two processes are the same, FCFS scheduling is used to

break the tie.

LAB NO: 6

Example:Non-Preemptive

52

Process Arrival time Burst time

A 0 15

B 5 3

C 8 5

D 10 7

SJF Waiting time A= 0, B=10, C=10, D=13. TT A=15, B=13, C=15, D=20.

0 15 18 23 30

A B C D

2.3 Priority Scheduling:

A priority is associated with each process, and the CPU is allocated to the process with

the highest priority. Equal-priority processes are scheduled in FCFS order. An SJF algo-

rithm is simply a priority algorithm where the priority (p) is the inverse of the (predicted)

next CPU burst. The larger the CPU burst, the lower the priority, and vice versa.

LAB NO: 6

Example:Non-Preemptive

53

Process Arrival Time Execution Time Priority

J1 0 8 1

J2 2 4 2

J3 9 9 2

J4 4 15 3

J1 J2 J3 J4

0 8 12 21 36

Average waiting time: (0+3+17)/3 = 6.67.

Lab Exercise

1. Develop a menu driven C program to implement the following process scheduling

algorithms: preemptive-SJF, RR and non-preemptive priority scheduling algo-

rithms.

Additional Exercises

1. Write C program to implement FCFS. (Assuming all the processes arrive at the

same time)

2. Write a C program to implement non-preemptive SJF, where the arrival time is

different for the processes.

LAB NO: 7

54

LAB NO: 7 Date:

CLASSICAL PROBLEMS OF SYNCHRONIZATION

Objectives:

1. To solve synchronization problems using threads.

1. Semaphores

A semaphore is a synchronization tool to solve critical section problem. A semaphore S

is an integer variable that, apart from initialization, is accessed only through two stand-

ard atomic operations: wait () and signal ().

The definition of wait () is as follows:

Wait(S) {

while S <= 0

; // no-op

S--;

}

The definition of signal() is as follows:

signal(S) { S++; }

2. Classical Problems :

2.1 The Bounded – Buffer Problem

Here the pool consists of n buffers, each capable of holding one item. The mutex sema-

phore provides mutual exclusion for accesses to the buffer pool and is initialized to the

value 1. The empty and full semaphores count the number of empty and full buffers. The

semaphore empty is initialized to the value n; the semaphore full is initialized to the value

0. The classical example is the production line.

2.2 The Producer Consumer Problem:

A producer process produces information that is consumed by a consumer process. For

example, a compiler may produce assembly code, which is consumed by an assembler.

The assembler, in turn, may produce object modules, which are consumed by the loader.

The producer-consumer problem also provides a useful metaphor for the client-server

paradigm. We generally think of a server as a producer and a client as a consumer. For

LAB NO: 7

55

example, a Web server produces (that is, provides) HTML files and images, which are

consumed (that is, read) by the client Web browser requesting the resource.

One solution to the producer-consumer problem uses shared memory. To allow producer

and consumer processes to run concurrently, we must have available a buffer of items

that can be filled by the producer and emptied by the consumer. This buffer will reside in

a region of memory that is shared by the producer and consumer processes. A producer

can produce one item while the consumer is consuming another item. The producer and

consumer must be synchronized, so that the consumer does not try to consume an item

that has not yet been produced.

2.3 The Readers Writers Problem:

Suppose that a database is to be shared among several concurrent processes. Some of

these processes may want only to read the database, whereas others may want to update

(that is, to read and write) the database. We distinguish between these two types of pro-

cesses by referring to the former as readers and to the latter as writers. Obviously, if two

readers access the shared data simultaneously, no adverse effects will result. However, if

a writer and some other process (either a reader or a writer) access the database simulta-

neously, chaos may ensue.

To ensure that these difficulties do not arise, we require that the writers have exclusive

access to the shared database while writing to the database. This synchronization problem

is referred to as the readers-writers problem.

3. Algorithm

3.1. Solution to bounded buffer Producers_Consumers Problem using semaphores

process producers_consumers

{parent process}

const int capacity =5;

int item ;

buffer: array[1..capacity] of item;

empty, full : semaphore; {general} //Initialize empty to capacity and full to 0

pmutex, cmutex :semaphore; {binary} //Initialize to 1

int in =1, out=1;

// initiate processes producers, consumers

LAB NO: 7

56

}end { producers_consumers}

process producer;

do

{

//Produce the data to be put into buffer in anyway

wait(empty);

wait(pmutex);

buffer[in] = producedItem;

in = (in mod capacity) + 1;

signal(pmutex);

signal(full);

other_X_processing

}while (TRUE);

end; {producer}

process consumer;

do

{ wait(full);

wait(cmutex);

citem = buffer[out];

out = (out mod capacity) + 1;

signal(cmutex);

signal(empty);

// Use the consumed data

} while(TRUE);

end; {consumer}

3.2. Solution to Readers Writers problem using semaphores

program readers_writers;

var

readercount : integer;

mutex, write : semaphore; {binary}

LAB NO: 7

57

process readerX;

begin

while true do

begin

{obtain permission to enter}

wait(mutex);

readercount := readercount +1;

if readercount = 1 then wait(write);

signal(mutex);

…

{reads}

…

wait(mutex);

readercount = readercount – 1;

if readercount = 0 then signal(write);

signal(mutex);

other_X_processing

end {while}

end; {reader}

process writerZ;

begin

while true do

begin

wait(write);

…

signal(write);

Other_Z_processing

end {while}

end; {writerZ}

{parent process}

begin {readers_writers}

readercount : = 0;

signal(mutex);

signal (write);

LAB NO: 7

58

initiate readers, writers

end {readers_writers}

Lab Exercise

1. Write a C program to solve producer consumer problem with bounded buffer using

semaphores.

2. Write a C program to solve the readers and writers Problem.

Additional Exercise

1. Write a C program to solve the Dining-Philosophers problem.

LAB NO: 8

59

LAB NO: 8 Date:

BANKERS ALGORITHM

Objectives:

1. To implement deadlock avoidance and Safe State in a set of concurrent processes.

2. To solve a Banker’s Algorithm using Safety Algorithm and Resource Request

Algorithm for avoiding deadlocks in a computer system.

1. Deadlocks

In a multiprogramming environment, several processes may compete for a finite number

of resources. A process requests resources; if the resources are not available at that time,

the process enters a waiting state. Sometimes, a waiting process is never again able to

change state, because the resources it has requested are held by other waiting processes.

This situation is called a deadlock. Under the normal mode of operation, a process may

utilize a resource in only the following sequence:

Request: The process requests the resource. If the request cannot be granted immediately

(for example, if the resource is being used by another process), then the requesting pro-

cess must wait until it can acquire the resource.

Use: The process can operate on the resource (for example, if the resource is a printer,

the process can print on the printer).

Release: The process releases the resource.

A deadlock situation can arise if the following four conditions hold simultaneously in a

system:

Mutual exclusion: At least one resource must be held in a non-sharable mode; that is,

only one process at a time can use the resource. If another process requests that resource,

the requesting process must be delayed until the resource has been released.

Hold and wait: A process must be holding at least one resource and waiting to acquire

additional resources that are currently being held by other processes.

No preemption: Resources cannot be preempted; that is, a resource can be released only

voluntarily by the process holding it, after that process has completed its task.

LAB NO: 8

60

Circular wait: A set { P0 , Pl, ... , P11 } of waiting processes must exist such that Po is

waiting for a resource held by P1, P1 is waiting for a resource held by P2, ... , Pn-1 is

waiting for a resource held by Pn and Pn is waiting for a resource held by Po.

2. Deadlock Avoidance

In deadlock avoidance, simplest and most useful model requires that each process declare

the maximum number of resources of each type that it may need. The deadlock-avoidance

algorithm dynamically examines the resource-allocation state to ensure that there can

never be a circular-wait condition. Resource-allocation state is defined by the number of

available and allocated resources, and the maximum demands of the processes

Safe Sate

When a process requests an available resource, system must decide if immediate alloca-

tion leaves the system in a safe state. System is in safe state if there exists a sequence

<P1, P2, …, Pn> of ALL the processes in the systems such that for each Pi, the resources

that Pi can still request can be satisfied by currently available resources plus resources

held by all the Pj, with j < i. That is:

• If Pi resource needs are not immediately available, then Pi can wait until all Pj

have finished

• When Pj is finished, Pi can obtain needed resources, execute, return allocated re-

sources, and terminate

• When Pi terminates, Pi +1 can obtain its needed resources, and so on

If a system is in safe state then no deadlocks. If a system is in unsafe state then there is a

possibility of deadlock

LAB NO: 8

61

Fig 7.1 Safe, Unsafe and Deadlock State

3. Bankers Algorithm

It is a deadlock avoidance algorithm. The name was chosen because the bank never allo-

cates more than the available cash.

Available: A vector of length m indicates the number of available resources of each type.

If Available[j] equals k, then k instances of resource type Ri are available.

Max: An n x m matrix defines the maximum demand of each process. If Max[i] [j] equals

k, then process P; may request at most k instances of resource type Ri.

Allocation: An n x m matrix defines the number of resources of each type currently allo-

cated to each process. If Allocation[i][j] equals lc, then process Pi is currently allocated

lc instances of resource type Rj.

Need: An n x m matrix indicates the remaining resource need of each process. If

Need[i][j] equals k, then process Pi may need k more instances of resource type Ri to

complete its task. Note that Need[i][j] equals Max[i][j] - Allocation [i][j].

3.1 Safety Algorithm:

• Let Work and Finish be vectors of length m and n, respectively. Initialize Work=

Available and Finish[i] =false for i = 0, 1, ... , n - 1.

• Find an index i such that both

LAB NO: 8

62

a. Finish[i] ==false

b. Needi <= Work

If no such i exists, go to step 4.

• Work = Work + Allocation;

Finish[i] = true

Go to step 2.

• If Finish[i] ==true for all i, then the system is in a safe state.

3.2 Resource-Request Algorithm :

This algorithm is used for determining whether requests can be safely granted.

Let Requesti; be the request vector for process Pi. If Requesti [j] == k, then process Pi

wants k instances of resource type Rj. When a request for resources is made by process

Pi, the following actions are taken:

1. If Requesti <= Needi, go to step 2. Otherwise, raise an error condition, since the pro-

cess has exceeded its maximum claim.

2. If Requesti <= Available, go to step 3. Otherwise, Pi must wait, since the resources

are not available.

3. Have the system pretend to have allocated the requested resources to process Pi by

modifying the state as follows:

Available= Available – Requesti;

Allocationi =Allocationi +Requesti;

Needi =Needi - Requesti;

If the resulting resource-allocation state is safe, the transaction is completed, and process

Pi is allocated its resources. However, if the new state is unsafe, then Pi must wait for

Requesti, and the old resource-allocation state is restored.

Lab Exercise

1. Develop a program to simulate banker’s algorithm. (Consider safety and resource-

request algorithms)

Additional exercises

1. Write a C program to implement the deadlock detection algorithm.

LAB NO: 9

63

LAB NO: 9 Date:

DYNAMIC STORAGE ALLOCATION STRATEGY FOR FIRST FIT AND

BEST FIT

Objectives:

1. To learn the algorithm for first and best fit strategies.

2. To write C program which allocates memory requirement for processes using first

fit and best fit strategies.

1. Description

One of the simplest methods for memory allocation is to divide memory into several

fixed-sized partitions. Each partition may contain exactly one process. In this multiple-

partition method, when a partition is free, a process is selected from the input queue and

is loaded into the free partition. When the process terminates, the partition becomes avail-

able for another process. The operating system keeps a table indicating which parts of

memory are available and which are occupied. Finally, when a process arrives and needs

memory, a memory section large enough for this process is provided. When it is time to

load or swap a process into main memory, and if there is more than one free block of

memory of sufficient size, then the operating system must decide which free block to

allocate.

The first fit and best fit strategies are used to select a free hole (available block of

memory) from the set of available holes.

First fit: Allocate the first hole that is big enough. Searching can start either at the begin-

ning of the set of holes or at the location where the previous first-fit search ended. We

can stop searching as soon as we find a free hole that is large enough.

Best fit: Allocate the smallest hole that is big enough. We must search the entire list,

unless the list is ordered by size. This strategy produces the smallest leftover hole.

2. Algorithm

First Fit Allocation

1. Declare structures hole and process to hold information about set of holes and

processes respectively.

2. Get number of holes, say nh.

3. Get the size of each hole

4. Get number of processes, say np.

LAB NO: 9

64

5. Get the memory requirements for each process.

6. Allocate processes to holes, by examining each hole as follows:

a. If hole size > process size then

i. Mark process as allocated to that hole.

i. ii. Decrement hole size by process size.

b. Otherwise check the next from the set of hole

7. Print the list of process and their allocated holes or unallocated status.

8. Print the list of holes, their actual and current availability.

9. Stop

Best Fit Allocation

1. Declare structures hole and process to hold information about set of holes

2. and processes respectively.

3. Get number of holes, say nh.

4. Get the size of each hole

5. Get number of processes, say np.

6. Get the memory requirements for each process.

7. Allocate processes to holes, by examining each hole as follows:

a. Sort the holes according to their sizes in ascending order

b. If hole size > process size then

i. Mark process as allocated to that hole.

i. ii. Decrement hole size by process size.

c. Otherwise check the next from the set of sorted hole

8. Print the list of process and their allocated holes or unallocated status.

9. Print the list of holes, their actual and current availability.

10. Stop

Lab exercise

1. Write a C program to implement dynamic storage allocation strategy for first fit and

best fit using dynamic allocations for all the required data structures.

Additional exercises

1. Write a C program to implement dynamic storage allocation strategy for worst fit

using dynamic allocations for all the required data structures.

1. Write a C program to implement basic page replacement algorithm.

LAB NO: 10

65

LAB NO: 10 Date:

PAGE REPLACEMENT ALGORITHMS

Objectives:

1. To learn FIFO and optimal page replacement algorithms.

2. To write a C program to simulate FIFO and optimal page replacement algorithms.

1. Introduction :

Page replacement is basic to demand paging. It completes the separation between logical memory

and physical memory. With this mechanism, an enormous virtual memory can be provided for

programmers on a smaller physical memory. There are many different page-replacement algo-

rithms. Every operating system probably has its own replacement scheme.

FIFO algorithm:

The simpler page replacement algorithm is a FIFO algorithm. A FIFO replacement algorithm

associates with each page the time when that page was brought into memory. When a page must

be replace, the oldest page is chosen. We can create a FIFO queue to hold all pages in memory.

We replace the page at the head of the queue when a page is brought into memory; we insert it at

the tail of the queue.

Optimal Page Replacement :

Optimal page replacement algorithm has the lowest page-fault rate of all algorithms and will never

suffer from Belady's anomaly. The basic idea is to replace the page that will not be used for the

longest period of time. Use of this page-replacement algorithm guarantees the lowest possible

page fault rate for a fixed number of frames. Unfortunately, the optimal page-replacement algo-

rithm is difficult to implement, because it requires future knowledge of the reference string.

LAB NO: 10

66

2. Algorithms :

FIFO :

1. Start

2. Read the number of frames

3. Read the number of pages

4. Read the page numbers

5. Initialize the values in frames to -1

6. Allocate the pages in to frames in first in first out order.

7. Display the number of page faults.

8. stop

Optimal Page Replacement :

1. Start

2. Read the number of frames

3. Read the number of pages

4. Read the page numbers

5. Initialize the values in frames to -1

6. Replace the page that will not be used for the longest period of time.

7. Display the number of page faults.

8. stop.

Lab exercise :

1. Write a C program to simulate page replacement algorithms: FIFO and optimal. Frame allo-

cation has to be done as per user input and use dynamic allocation for all data structures.

2. Write a C program to simulate LRU Page Replacement. Frame allocation has to be done as

per user input and dynamic allocation for all data structures.

LAB NO: 11

67

LAB NO: 11 Date:

DISK SCHEDULING ALGORITHM

Objectives:

1. To understand the concept of various disk scheduling algorithms.

2. To write a menu driven C program to simulate the following disk scheduling al-

gorithm : SSTF, SCAN, C-SCAN, C-LOOK.

1. Introduction

In operating systems, seek time is very important. Since all device requests are linked in

queues, the seek time is increased causing the system to slow down. Disk Scheduling

Algorithms are used to reduce the total seek time of any request.

TYPES OF DISK SCHEDULING ALGORITHMS

Although there are other algorithms that reduce the seek time of all requests, we will

concentrate on the following disk scheduling algorithms:

a. First Come-First Serve (FCFS)

b. Shortest Seek Time First (SSTF)

c. Elevator (SCAN)

d. Circular SCAN (C-SCAN)

e. LOOK

f. C-LOOK

By using these algorithms we can keep the Head Movements (# tracks) to the least

amount as possible. The less the head has to move the faster the seek time will be.

Problem :

Given the following queue -- 95, 180, 34, 119, 11, 123, 62, 64 with the Read-write head

initially at the track 50 and the tail track being at 199 let us now discuss the different

algorithms.

LAB NO: 11

68

2. Illustration of Disk Scheduling Algorithm :

Shortest Seek Time First (SSTF):

In this case request is serviced according to next shortest distance. Starting at 50, the next

shortest distance would be 62 instead of 34 since it is only 12 tracks away from 62 and

16 tracks away from 34. The process would continue until all the process are taken care

of. For example the next case would be to move from 62 to 64 instead of 34 since there

are only 2 tracks between them and not 18 if it were to go the other way. Although this

seems to be a better service being that it moved a total of 236 tracks, this is not an optimal

one. There is a great chance that starvation would take place. The reason for this is if there

were a lot of requests close to each other the other requests will never be handled since

the distance will always be greater.

SCAN :

Figure 11.1 SSTF

This approach works like an elevator does. It scans down towards the nearest end and

then when it hits the bottom it scans up servicing the requests that it didn't get going down.

If a request comes in after it has been scanned it will not be serviced until the process

comes back down or moves back up. This process moved a total of 230 tracks. Once again

this is more optimal than the previous algorithm, but it is not the best.

Circular Scan (C-SCAN) :

Figure 11.2 SCAN

LAB NO: 11

69

Circular scanning works just like the elevator to some extent. It begins its scan toward

the nearest end and works it way all the way to the end of the system. Once it hits the

bottom or top it jumps to the other end and moves in the same direction. Keep in mind

that the huge jump doesn't count as a head movement. The total head movement for this

algorithm is only 187 track, but still this isn't the most sufficient.

C-LOOK :

Figure 11.3 C-SCAN

This is just an enhanced version of C-SCAN. In this the scanning doesn't go past the last

request in the direction that it is moving. It too jumps to the other end but not all the way

to the end. Just to the furthest request. C-SCAN had a total movement of 187 but this scan

(C-LOOK) reduced it down to 157 tracks.

From this you were able to see a scan change from 644 total head movements to just 157.

You should now have an understanding as to why your operating system truly relies on

the type of algorithm it needs when it is dealing with multiple processes.

Figure 11.4 C-LOOK

LAB NO: 11

70

Lab Exercise :

1. Develop a menu driven program to simulate the following disk scheduling algo-

rithms: SSTF, SCAN, C-SCAN, C-LOOK.

Additional Exercise :

1. Develop a menu driven program to simulate the following disk scheduling algo-

rithms: FCFS, LOOK.

LAB NO: 12

71

LAB NO: 12 Date:

SCHEDULING IN REAL TIME SYSTEMS

Objectives:

1. To know the definition of Real Time Systems (RTSs).

2. To understand Rate-Monotonic Scheduling.

3. To understand Earliest-Deadline-First Scheduling.

1. Introduction to Real Time Systems (RTSs)

A real-time system is a computer system that requires not only that the computing results

be "correct" but also that the results be produced within a specified deadline period. Re-

sults produced after the deadline has passed even if correct-may be of no real value. To

illustrate, consider an autonomous robot that delivers mail in an office complex. If its

vision-control system identifies a wall after the robot has walked into it, despite correctly

identifying the wall, the system has not met its requirement. Contrast this timing require-

ment with the much less strict demands of other systems. In an interactive desktop com-

puter system, it is desirable to provide a quick response time to the interactive user, but it

is not mandatory to do so. Some systems -such as a batch-processing system-may have

no timing requirements whatsoever.

Types of RTSs

Real-time computing is of two types: hard and soft. A hard real-time system has the most

stringent requirements, guaranteeing that critical realtime tasks be completed within their

deadlines. Safety-critical systems are typically hard real-time systems. A soft real-time

system is less restrictive, simply providing that a critical real-time task will receive pri-

ority over other tasks and that it will retain that priority until it completes. Many com-

mercial operating systems-as well as Linux-provide soft real-time support.

Process Characteristics

Certain characteristics of the processes are as follows: First, the processes are considered

periodic. That is, they require the CPU at constant intervals (periods). Each periodic pro-

cess has a fixed processing timet once it acquires the CPU, a deadline d by which time it

must be serviced by the CPU, and a period p. The relationship of the processing time, the

deadline, and the period can be expressed as 0 <= t <= d <= p. The rate of a periodic task

LAB NO: 12

72

is 1 / p. The Figure below illustrates the execution of a periodic process over time. Sched-

ulers can take advantage of this relationship and assign priorities according to the deadline

or rate requirements of a periodic process.

2. Rate-Monotonic Scheduling

The rate-monotonic scheduling algorithm schedules periodic tasks using a static priority

policy with preemption. If a lower-priority process is running and a higher-priority pro-

cess becomes available to run, it will preempt the lower-priority process. Upon entering

the system, each periodic task is assigned a priority inversely based on its period. The

shorter the period, the higher the priority; the longer the period, the lower the priority.

The rationale behind this policy is to assign a higher priority to tasks that require the CPU

more often.

Furthermore, rate-monotonic scheduling assumes that the processing time of a periodic

process is the same for each CPU burst. That is, every time a process acquires the CPU,

the duration of its CPU burst is the same.

Let's consider an example. We have two processes P1 and P2. The periods for P1 and P2

are 50 and 100, respectively-that is, Pl =50 and P2 = 100. The processil1.g times are t1 =

20 for P1 and t2 = 35 for P2 . The deadline for each process requires that it complete its

CPU burst by the start of its next period. We must first ask ourselves whether it is possible

to schedule these tasks so that each meets its deadlines. If we measure the CPU utilization

of a process Pi as the ratio of its burst to its period -ti I Pi -the CPU utilization of P1 is

20/50 = 0.40 and that of P2 is 35/100 = 0.35, for a total CPU utilization of 75 percent.

Therefore, it seems we can schedule these tasks in such a way that both meet their dead-

lines and still leave the CPU with available cycles.

Example:

Suppose we use rate-monotonic scheduling, in which we assign P1 a higher priority than

P2, since the period of P1 is shorter than that of P2.

LAB NO: 12

73

P1 starts first and completes its CPU burst at time 20, thereby meeting its first deadline.

P2 starts running at this point and runs until time 50. At this time, it is preempted by P1,

although it still has 5 milliseconds remaining in its CPU burst. P1 completes its CPU burst

at time 70, at which point the scheduler resumes P2. P2 completes its CPU burst at time

75, also meeting its first deadline. The system is idle until time 100, when P1 is scheduled

again. Rate-monotonic scheduling is considered optimal in that if a set of processes can-

not be scheduled by this algorithm, it cannot be scheduled by any other algorithm that

assigns static priorities.

3. Earliest-Deadline-First Scheduling

Earliest-deadline-first (EDF) scheduling dynamically assigns priorities according to

deadline. The earlier the deadline, the higher the priority; the later the deadline, the lower

the priority. Under the EDF policy, when a process becomes runnable, it must announce

its deadline requirements to the system. Priorities may have to be adjusted to reflect the

deadline of the newly rmmable process. Note how this differs from rate-monotonic sched-

uling, where priorities are fixed.

Example:

P1 has values of p1 = 50 and t1 = 25 and that P2 has values of p2 = 80 and t2 = 35. The

EDF scheduling of these processes is shown in Figure below.

Process P1 has the earliest deadline, so its initial priority is higher than that of process P2

• Process P2 begins rmming at the end of the CPU burst for P1. However, whereas rate-

monotonic scheduling allows P1 to preempt P2 at the beginning of its next period at time

50, EDF scheduling allows process P2 to continue running. P2 now has a higher priority

than P1 because its next deadline (at time 80) is earlier than that of P1 (at time 100). Thus,

both P1 and P2 meet their first deadlines. Process P1 again begins running at time 60 and

completes its second CPU burst at time 85, also meeting its second deadline at time 100.

LAB NO: 12

74

P2 begins rum1ing at this point only to be preempted by P1 at the start of its next period

at time 100. P2 is preempted because P1 has an earlier deadline (time 150) than P2 (time

160). At time 125, P1 completes its CPU burst and P2 resumes execution, finishing at

time 145 and meeting its deadline as well. The system is idle until time 150, when P1 is

scheduled to run once again.

Unlike the rate-monotonic algorithm, EDF scheduling does not require that processes be

periodic, nor must a process require a constant amount of CPU time per burst. The only

requirement is that a process a1mom1ce its deadline to the scheduler when it becomes

runnable. The appeal of EDF scheduling is that it is theoretically optimal-theoretically, it

can schedule processes so that each process can meet its deadline requirements and CPU

utilization will be 100 percent. In practice, however, it is impossible to achieve this level

of CPU utilization due to the cost of context switching between processes and interrupt

handling.

Lab exercises

1. Write a C program to simulate Rate-Monotonic and Earliest-Deadline-First sched-

uling for real time systems.

REFERENCES

1. A Silberschartz and Galvin, “Operating Systems Concepts “, 8th edition, Addison

Wesley, 2012.

2. H.M. Deitel “An Introduction to Operating Systems” Addison Wesley, 2000.

3. Milan Milankovic“Operating systems Concepts and Design”McGrawHill, 2000.

4. T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms, 2nd

Edition, Prentice-Hall India, 2001.

5. Sartaj Sahni, Data Structures, Algorithms and Applications in C++, 2nd Edition,

McGraw-Hill, 2000.

6. Mark Allen Weiss, “Data Structures and Algorithm Analysis in C”, Pearson Educa-

tion, 2nd Edition, 2007.

